581
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of different extraction methods on the physicochemical properties and biological activities of polysaccharides from maca roots

& ORCID Icon
Pages 596-605 | Received 08 Jun 2023, Accepted 23 Aug 2023, Published online: 11 Oct 2023

References

  • Abuduwaili, A., Rozi, P., Mutailifu, P., Gao, Y., Nuerxiati, R., Aisa, H. A., & Yili, A. (2019). Effects of different extraction techniques on physicochemical properties and biological activities of polysaccharides from Fritillaria pallidiflora schrenk. Process Biochemistry, 83, 189–197. https://doi.org/10.1016/j.procbio.2019.05.020
  • Adiotomre, J., Eastwood, M. A., Edwards, C., & Brydon, W. G. (1990). Dietary fiber: In vitro methods that anticipate nutrition and metabolic activity in humans. The American Journal of Clinical Nutrition, 52(1), 128–134. https://doi.org/10.1093/ajcn/52.1.128
  • Ahmed, F., Sairam, S., & Urooj, A. (2011). In vitro hypoglycemic effects of selected dietary fiber sources. Journal of Food Science and Technology, 48(3), 285–289. https://doi.org/10.1007/s13197-010-0153-7
  • Akhtar, H. M. S., Abdin, M., Hamed, Y. S., Wang, W., Chen, G., Chen, D., Chen, C., Li, W., Mukhtar, S., & Zeng, X. (2019). Physicochemical, functional, structural, thermal characterization and α-amylase inhibition of polysaccharides from chickpea (Cicer arietinum L.) hulls. LWT – Food Science and Technology, 113, 108265. https://doi.org/10.1016/j.lwt.2019.108265
  • An, Y., Lu, W., Li, W., Pan, L., Lu, M., Cesarino, I., Li, Z., & Zeng, W. (2022). Dietary fiber in plant cell walls—The healthy carbohydrates. Food Quality and Safety, 6, 1–17. https://doi.org/10.1093/fqsafe/fyab037
  • Baek, J. H., Cha, T. Y., Heo, J. C., Lee, S. H., & Lee, S. Y. (2010). In vitro and in vivo physiological characteristics of dietary fiber from by-product of aloe vera gel processing. Food Engineering Progress, 14(2), 173–182. https://db.koreascholar.com/Article/Detail/285638
  • Boyd, G. S., Eastwood, M. A., & Maclean, N. (1966). Bile acids in the rat: Studies in experimental occlusion of the bile duct. Journal of Lipid Research, 7(1), 83–94. https://doi.org/10.1016/S0022-2275(20)39589-4
  • Cesaretti, M., Luppi, E., Maccari, F., & Volpi, N. (2003). A 96-well assay for uronic acid carbazole reaction. Carbohydrate Polymers, 54(1), 59–61. https://doi.org/10.1016/S0144-8617(03)00144-9
  • Chen, F., & Huang, G. (2018). Extraction and antioxidant activities of cushaw polysaccharide. International Journal of Biological Macromolecules, 120(Pt B), 1646–1649. https://doi.org/10.1016/j.ijbiomac.2018.09.200
  • Chen, J., Zhao, Q., Wang, L., Zha, S., Zhang, L., & Zhao, B. (2015). Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue. Carbohydrate Polymers, 132, 509–512. https://doi.org/10.1016/j.carbpol.2015.06.079
  • Daou, C., & Zhang, H. (2014). Functional and physiological properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran. Journal of Food Science and Technology, 51(12), 3878–3885. https://doi.org/10.1007/s13197-013-0925-y
  • Hou, Y., Gong, T., Zhang, J., Yang, X., & Guo, Y. (2019). Structural characterization and emulsifying properties of thinned-young apples polysaccharides. Biochemical and Biophysical Research Communications, 516(4), 1175–1182. https://doi.org/10.1016/j.bbrc.2019.07.019
  • Hwang, Y. J., Kim, J. M., & Yoon, K. Y. (2020). Characteristics of water-soluble polysaccharide extracts produced from perilla seed meal via enzymatic hydrolysis. CyTA-Journal of Food, 18(1), 653–661. https://doi.org/10.1080/19476337.2020.1814420
  • Jeddou, K. B., Chaari, F., Maktouf, S., Ellouz, O. N., Helbert, C. B., & Ghorbel, R. E. (2016). Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chemistry, 205, 97–105. https://doi.org/10.1016/j.foodchem.2016.02.108
  • Jindal, M., Kumar, V., Rana, V., & Tiwary, A. K. (2013). Exploring potential new gum source Aegle marmelos for food and pharmaceuticals: Physical, chemical and functional performance. Industrial Crops and Products, 45, 312–318. https://doi.org/10.1016/j.indcrop.2012.12.037
  • Kantar, S. E., Rajha, H. N., Boussetta, N., Vorobiev, E., Maroun, R. G., & Louka, N. (2019). Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chemistry, 295, 165–171. https://doi.org/10.1016/j.foodchem.2019.05.111
  • Karra, S., Sebii, H., Borchani, C., Danthine, S., Blecker, C., Attia, H., Besbes, S., & Bouaziz, M. A. (2019). Physico-chemical and functional properties of dried male date palm flowers. Food Bioscience, 31, 100441. https://doi.org/10.1016/j.fbio.2019.100441
  • Kaur, R., & Sharma, M. (2019). Cereal polysaccharides as sources of functional ingredient for reformulation of meat products: A review. Journal of Functional Foods, 62, 103527. https://doi.org/10.1016/j.jff.2019.103527
  • Kontogiorgos, V. (2019). Polysaccharides at fluid interfaces of food systems. Advances in Colloid and Interface Science, 270, 28–37. https://doi.org/10.1016/j.cis.2019.05.008
  • Kumar, P., & Kumar, V. (2017). Estimation of uronic acids using diverse approaches and monosaccharide composition of alkali soluble polysaccharide from Vitex negundo linn. Carbohydrate Polymers, 165(1), 205–212. https://doi.org/10.1016/j.carbpol.2017.02.034
  • Lee, J. J., & Yoon, K. Y. (2022). Ultrasound-assisted extractions for improving the recovery of phenolics and charantin from bitter melon and for increasing the antioxidant, antidiabetic and anti-obesity activities of its extracts. Polish Journal of Food and Nutrition Sciences, 72(3), 141–150. https://doi.org/10.31883/pjfns/149434
  • Li, Y., Xin, Y., Xu, F., Zheng, M., Xi, X., Cui, X., Cao, H., Guo, H., & Han, C. (2018). Maca polysaccharides: Extraction optimization, structural features and anti-fatigue activities. International Journal of Biological Macromolecules, 115, 618–624. https://doi.org/10.1016/j.ijbiomac.2018.04.063
  • Li, Y., Xu, F., Zheng, M., Xi, X., Cui, X., & Han, C. (2018). Maca polysaccharides: A review of compositions, isolation, therapeutics and prospects. International Journal of Biological Macromolecules, 111, 894–902. https://doi.org/10.1016/j.ijbiomac.2018.01.059
  • Li, B., Yang, W., Nie, Y., Kang, F., Goff, H. D., & Cui, S. W. (2019). Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 94, 48–56. https://doi.org/10.1016/j.foodhyd.2019.02.042
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Lu, X., Li, N., Qiao, X., Qiu, Z., & Liu, P. (2018). Effects of thermal treatment on polysaccharide degradation during black garlic processing. LWT - Food Science and Technology, 95, 223–229. https://doi.org/10.1016/j.lwt.2018.04.059
  • Luo, X., Wang, Q., Zheng, B., Lin, L., Chen, B., Zheng, Y., & Xiao, J. (2017). Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food and Chemical Toxicology, 109(P2), 1003–1009. https://doi.org/10.1016/j.fct.2017.02.029
  • Ma, M., Mu, T., Sun, H., Zhang, M., Chen, J., & Yan, Z. (2015). Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.). Food Chemistry, 179, 270–277. https://doi.org/10.1016/j.foodchem.2015.01.136
  • Nadar, S. S., Rao, P., & Rathod, V. K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 108, 309–330. https://doi.org/10.1016/j.foodres.2018.03.006
  • Nielsen, S. S. (2010). Phenol-sulfuric acid method for total carbohydrates. In S. S. Nielsen (Ed.), Food analysis laboratory manual. Food science texts series (pp. 47–53). Springer US. https://doi.org/10.1007/978-1-4419-1463-7_6
  • Nuerxiati, R., Abuduwaili, A., Mutailifu, P., Wubulikasimu, A., Rustamova, N., Jingxue, C., Aisa, H. A., & Yili, A. (2019). Optimization of ultrasonic-assisted extraction, characterization and biological activities of polysaccharides from Orchis chusua D. Don (Salep). International Journal of Biological Macromolecules, 141(1), 431–443. https://doi.org/10.1016/j.ijbiomac.2019.08.112
  • Oh, H. J., & Lee, S. R. (1996). Physiological function in vitro of β-glucan isolated from barley. Korean Journal of Food Science & Technology, 28(4), 689–695. https://koreascience.kr/article/JAKO199603042041374.pdf
  • Oh, M. H., & Yoon, K. Y. (2018). Comparison of the biological activity of crude polysaccharide fractions obtained from Cedrela sinensis using different extraction methods. Polish Journal of Food and Nutrition Sciences, 68(4), 327–334. https://doi.org/10.1515/pjfns-2018-0007
  • Pereira, G. A., Silva, E. K., Araujo, N. M. P., Arruda, H. S., Meireles, M. A. A., & Pastore, G. M. (2019). Mutamba seed mucilage as a novel emulsifier: Stabilization mechanisms, kinetic stability and volatile compounds retention. Food Hydrocolloids, 97, 105190. https://doi.org/10.1016/j.foodhyd.2019.105190
  • Rezaei, A., Nasirpour, A., & Tavanai, H. (2016). Fractionation and some physicochemical properties of almond gum (Amygdalus communis L.) exudates. Food Hydrocolloids, 60, 461–469. https://doi.org/10.1016/j.foodhyd.2016.04.027
  • Robertson, J. A., Monredon, F. D., Dysseler, P., Guillon, F., Amadò, R., & Thibault, J. F. (2000). Hydration properties of dietary fibre and resistant starch: A European collaborative study. LWT-Food Science and Technology, 33(2), 72–79. https://doi.org/10.1006/fstl.1999.0595
  • Rodríguez-Gutiérrez, G., Rubio-Senent, F., Lama-Muñoz, A., García, A., & Fernández-Bolaños, J. (2014). Properties of lignin, cellulose, and hemicelluloses isolated from olive cake and olive stones: Binding of water, oil, bile acids, and glucose. Journal of Agricultural and Food Chemistry, 62(36), 8973–8981. https://doi.org/10.1021/jf502062b
  • Schepetkin, I. A., & Quinn, M. T. (2006). Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. International Immunopharmacology, 6(3), 317–333. https://doi.org/10.1016/j.intimp.2005.10.005
  • Schmidt, U. S., Schmidt, K., Kurz, T., Endreß, H. U., & Schuchmann, H. P. (2015). Pectins of different origin and their performance in forming and stabilizing oil-in-water-emulsions. Food Hydrocolloids, 46, 59–66. https://doi.org/10.1016/j.foodhyd.2014.12.012
  • Shen, S. G., Lin, Y. H., Zhao, D. X., Wu, Y. K., Yan, R. R., Zhao, H. B., Tan, Z. L., Jia, S. R., & Han, P. P. (2019). Comparisons of functional properties of polysaccharides from Nostoc flagelliforme under three culture conditions. Polymers, 11(2), 263–274. https://doi.org/10.3390/polym11020263
  • Singh, A., Benjakul, S., & Kijroongrojana, K. (2018). Effect of ultrasonication on physicochemical and foaming properties of squid ovary powder. Food Hydrocolloids, 77, 286–296. https://doi.org/10.1016/j.foodhyd.2017.10.005
  • Tan, H. F., & Gan, C. Y. (2016). Polysaccharide with antioxidant, α-amylase inhibitory and ACE inhibitory activities from Momordica charantia. International Journal of Biological Macromolecules, 85, 487–496. https://doi.org/10.1016/j.ijbiomac.2016.01.023
  • Tang, W., Jin, L., Xie, L., Huang, J., Wang, N., Chu, B., Dai, X., Liu, Y., Wang, R., & Zhang, Y. (2017). Structural characterization and antifatigue effect in vivo of maca (Lepidium meyenii Walp) polysaccharide. Journal of Food Science, 82(3), 757–764. https://doi.org/10.1111/1750-3841.13619
  • Trigui, I., Yaich, H., Sila, A., Rouhou, S. C., Bougatef, A., Blecker, C., Attia, H., & Ayadi, M. A. (2018). Physicochemical properties of water-soluble polysaccharides from black cumin seeds. International Journal of Biological Macromolecules, 117, 937–946. https://doi.org/10.1016/j.ijbiomac.2018.05.202
  • Wang, Y., Xu, F., Cheng, J., Wu, X., Xu, J., Li, C., Li, W., Xie, N., Wang, Y., & He, L. (2022). Natural deep eutectic solvent-assisted extraction, structural characterization, and immunomodulatory activity of polysaccharides from Paecilomyces hepialid. Molecules, 27(22), 8020. https://doi.org/10.3390/molecules27228020
  • Wang, S., Yang, J., Shao, G., Qu, D., Zhao, H., Yang, L., Zhu, L., He, Y., Liu, H., & Zhu, D. (2019). Soy protein isolated-soy hull polysaccharides stabilized O/W emulsion: Effect of polysaccharides concentration on the storage stability and interfacial rheological properties. Food Hydrocolloids, 101, 105490. https://doi.org/10.1016/j.foodhyd.2019.105490
  • Wang, S., & Zhu, F. (2019). Chemical composition and health effects of maca (Lepidium meyenii). Food Chemistry, 288, 422–443. https://doi.org/10.1016/j.foodchem.2019.02.071
  • Wu, X. H., Luo, M. S., Zhao, L., Wang, S. N., Zhu, D. S., Yang, L. N., & Liu, H. (2022). Emulsification characteristics of soy hull polysaccharides obtained by membrane separation. International Food Research Journal, 29(5), 1215–1225. https://doi.org/10.47836/ifrj.29.5.22
  • Wu, H., Shang, H., Guo, Y., Zhang, H., & Wu, H. (2020). Comparison of different extraction methods of polysaccharides from cup plant (Silphium perfoliatum L.). Process Biochemistry, 90, 241–248. https://doi.org/10.1016/j.procbio.2019.11.003
  • Zang, L., & Wang, M. (2017). Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita thunb. International Journal of Biological Macromolecules, 95, 675–681. https://doi.org/10.1016/j.ijbiomac.2016.11.096
  • Zhang, M., Wang, G., Lai, F., & Wu, H. (2016). Structural characterization and immunomodulatory activity of a novel polysaccharide from Lepidium meyenii. Journal of Agricultural and Food Chemistry, 64(9), 1921–1931. https://doi.org/10.1021/acs.jafc.5b05610