359
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Physicochemical properties and process contaminants analysis of flaky egg-free rolls incorporated with buckwheat (Fagopyrum esculentum Moench)

, , &
Pages 614-624 | Received 05 Jun 2023, Accepted 24 Aug 2023, Published online: 16 Oct 2023

References

  • Nayik, G. A., Tufail, T., Anjum, F. M., & Javed Ansari, M. (2023). Cereal grains: Composition, nutritional attributes, and potential applications (1st ed.). CRC Press. https://doi.org/10.1201/9781003252023
  • Abdel-Aal, E., & Wood, P. (2004). Specialty grains for food and feed. American Association of Cereal Chemists.
  • Aboshora, W., Yu, J., Omar, K. A., Li, Y., Hassanin, H. A., Navicha, W. B., & Zhang, L. (2019). Preparation of doum fruit (Hyphaene thebaica) dietary fiber supplemented biscuits: Influence on dough characteristics, biscuits quality, nutritional profile and antioxidant properties. Journal of Food Science and Technology, 56(3), 1328–1336. https://doi.org/10.1007/s13197-019-03605-z
  • Amagliani, L., O’Regan, J., Kelly, A. L., & O’Mahony, J. A. (2017). The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science & Technology, 64, 1–12. https://doi.org/10.1016/j.tifs.2017.01.008
  • Bastida, J. A., Piskula, M., & Zieliński, H. (2015). Recent advances in processing and development of buckwheat derived bakery and non-bakery products – a review. Polish Journal of Food and Nutrition Sciences, 65(1), 9–20. https://doi.org/10.1515/pjfns-2015-0005
  • Bilgiçli, N. (2009). Effect of buckwheat flour on chemical and functional properties of tarhana. LWT-Food Science and Technology, 42(2), 514–518. https://doi.org/10.1016/j.lwt.2008.09.006
  • Chan, Y.-J., Lu, W.-C., Lin, H.-Y., Wu, Z.-R., Liou, C.-W., & Li, P.-H. (2020). Effect of rice protein hydrolysates as an egg replacement on the physicochemical properties of flaky egg rolls. Foods, 9(2), 245. https://doi.org/10.3390/foods9020245
  • Csurka, T., Varga-Tóth, A., Kühn, D., Hitka, G., Badak-Kerti, K., Alpár, B., Surányi, J., Friedrich, L. F., & Pásztor-Huszár, K. (2022). Comparison of techno-functional and sensory properties of sponge cakes made with egg powder and different quality of powdered blood products for substituting egg allergen and developing functional food. Frontiers in Nutrition, 9, 979594. https://doi.org/10.3389/fnut.2022.979594
  • De Arcangelis, E., Cuomo, F., Trivisonno, M. C., Marconi, E., & Messia, M. C. (2020). Gelatinization and pasta making conditions for buckwheat gluten-free pasta. Journal of Cereal Science, 95, 103073. https://doi.org/10.1016/j.jcs.2020.103073
  • Deng, J., Liu, R., Lu, Q., Hao, P., Xu, A., Zhang, J., & Tan, J. (2018). Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chemistry, 252, 243–249. https://doi.org/10.1016/j.foodchem.2018.01.115
  • EFSA, E. (2015). Scientific opinion on acrylamide in food-EFSA panel on contaminants in the food chain (CONTAM). The EFSA Journal, 13(16), 4104.
  • Ezegbe, C. C., Onyeka, J. U., & Nkhata, S. G. (2023). Physicochemical, amino acid profile and sensory qualities of biscuit produced from a blend of wheat and velvet bean (mucuna pruriens) flour. Heliyon, 9(4), e15045. https://doi.org/10.1016/j.heliyon.2023.e15045
  • Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022). Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science & Technology, 125, 154–165. https://doi.org/10.1016/j.tifs.2022.04.007
  • Gullon, B., Lú-Chau, T. A., Moreira, M. T., Lema, J. M., & Eibes, G. (2017). Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science & Technology, 67, 220–235. https://doi.org/10.1016/j.tifs.2017.07.008
  • Guo, H., Yang, X., Zhou, H., Luo, X., Qin, P., Li, J., & Ren, G. (2017). Comparison of nutritional composition, aroma compounds, and biological activities of two kinds of tartary buckwheat tea. Journal of Food Science, 82(7), 1735–1741. https://doi.org/10.1111/1750-3841.13772
  • Jia, M., Yu, Q., Chen, J., He, Z., Chen, Y., Xie, J., Nie, S., & Xie, M. (2020). Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran. Food Hydrocolloids, 99, 105349. https://doi.org/10.1016/j.foodhyd.2019.105349
  • Kaur, M., Sandhu, K. S., Arora, A., & Sharma, A. (2015). Gluten free biscuits prepared from buckwheat flour by incorporation of various gums: Physicochemical and sensory properties. LWT-Food Science and Technology, 62(1), 628–632. https://doi.org/10.1016/j.lwt.2014.02.039
  • Kawabata, K., Mukai, R., & Ishisaka, A. (2015). Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food & Function, 6(5), 1399–1417. https://doi.org/10.1039/C4FO01178C
  • Kim, S.-L., Kim, S.-K., & Park, C.-H. (2004). Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Research International, 37(4), 319–327. https://doi.org/10.1016/j.foodres.2003.12.008
  • Kowalski, S., Mikulec, A., Mickowska, B., & Buksa, K. (2022). Nutritional properties and amino acid profile of buckwheat bread. Journal of Food Science and Technology, 59(8), 3020–3030. https://doi.org/10.1007/s13197-022-05518-w
  • Kreft, M. (2016). Buckwheat phenolic metabolites in health and disease. Nutrition Research Reviews, 29(1), 30–39. https://doi.org/10.1017/S0954422415000190
  • Lu, W.-C., Cheng, Y.-T., Chan, Y.-J., & Li, P.-H. (2022). Food safety assessments of acrylamide formation and characterizations of flaky rolls enriched with black rice (Oryza sativa). Frontiers in Nutrition, 9, 1027800. https://doi.org/10.3389/fnut.2022.1027800
  • Luthar, Z., Germ, M., Likar, M., Golob, A., Vogel-Mikuš, K., Pongrac, P., Kušar, A., Pravst, I., & Kreft, I. (2020). Breeding buckwheat for increased levels of rutin, quercetin and other bioactive compounds with potential antiviral effects. Plants (Basel), 9(12), 1638. https://doi.org/10.3390/plants9121638
  • Ma, Y. J., Guo, X. D., Liu, H., Xu, B. N., & Wang, M. (2013). Cooking, textural, sensorial, and antioxidant properties of common and tartary buckwheat noodles. Food Science and Biotechnology, 22(1), 153–159. https://doi.org/10.1007/s10068-013-0021-0
  • Mesías, M., Holgado, F., Márquez-Ruiz, G., & Morales, F. J. (2016). Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. LWT, 73, 528–535. https://doi.org/10.1016/j.lwt.2016.06.056
  • Mesías, M., Morales, F. J., & Delgado-Andrade, C. (2019). Acrylamide in biscuits commercialised in Spain: A view of the Spanish market from 2007 to 2019. Food & Function, 10(10), 6624–6632. https://doi.org/10.1039/C9FO01554J
  • Mieszkowska, A., & Marzec, A. (2016). Effect of polydextrose and inulin on texture and consumer preference of short-dough biscuits with chickpea flour. LWT, 73, 60–66. https://doi.org/10.1016/j.lwt.2016.05.036
  • Mihai, A. L., Negoiţă, M., & Horneţ, G.-A. (2020). Assessment of the acrylamide level of cereal-based products from Romania market in accordance with commission regulation (EU) 2017/2158. The Annals of the University Dunarea de Jos of Galati Fascicle VI-Food Technology, 44(1), 104–117.
  • Pokharel, A., Dangal, A., Karki, S., Lamichhane, S., Timsina, P., & Bohara, A. (2023). Study on the effect of different treatments on soy flour, and quality and sensory evaluation of prepared biscuits incorporated with oats and soy flour. Legume Science, e181. https://doi.org/10.1002/leg3.181
  • Qin, P., Wang, Q., Shan, F., Hou, Z., & Ren, G. (2010). Nutritional composition and flavonoids content of flour from different buckwheat cultivars. International Journal of Food Science & Technology, 45(5), 951–958. https://doi.org/10.1111/j.1365-2621.2010.02231.x
  • Rachman, A., Chen, L., Brennan, M., & Brennan, C. (2020). Effects of addition of buckwheat bran on physicochemical, pasting properties and starch digestion of buckwheat gels. European Food Research and Technology, 246(10), 2111–2117. https://doi.org/10.1007/s00217-020-03560-6
  • Sun, X., Li, W., Hu, Y., Zhou, X., Ji, M., Yu, D., Fujita, K., Tatsumi, E., & Luan, G. (2018). Comparison of pregelatinization methods on physicochemical, functional and structural properties of tartary buckwheat flour and noodle quality. Journal of Cereal Science, 80, 63–71. https://doi.org/10.1016/j.jcs.2018.01.016
  • Tien, N. N. T., Trinh, L. N. D., Inoue, N., Morita, N., & Hung, P. V. (2018). Nutritional composition, bioactive compounds, and diabetic enzyme inhibition capacity of three varieties of buckwheat in Japan. Cereal Chemistry, 95(5), 615–624. https://doi.org/10.1002/cche.10069
  • Van Hung, P., & Morita, N. (2008). Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chemistry, 109(2), 325–331. https://doi.org/10.1016/j.foodchem.2007.12.060
  • Wen, C., Zhang, J., Zhang, H., Duan, Y., & Ma, H. (2020). Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends in Food Science & Technology, 105, 308–322. https://doi.org/10.1016/j.tifs.2020.09.019
  • Zhang, C., Zhang, R., Li, Y. M., Liang, N., Zhao, Y., Zhu, H., He, Z., Liu, J., Hao, W., Jiao, R., Ma, K. Y., & Chen, Z.-Y. (2017). Cholesterol-lowering activity of tartary buckwheat protein. Journal of Agricultural and Food Chemistry, 65(9), 1900–1906. https://doi.org/10.1021/acs.jafc.7b00066
  • Zhu, F. (2021). Buckwheat proteins and peptides: Biological functions and food applications. Trends in Food Science & Technology, 110, 155–167. https://doi.org/10.1016/j.tifs.2021.01.081
  • Žilić, S., Aktağ, I. G., Dodig, D., Filipović, M., & Gökmen, V. (2020). Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions. Food Research International, 132, 109109. https://doi.org/10.1016/j.foodres.2020.109109