504
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Response surface methodology (RSM) identifies the lowest amount of chicken plasma protein (CPP) in surimi-based products with optimum protein solubility, cohesiveness, and whiteness

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 646-655 | Received 17 May 2023, Accepted 16 Oct 2023, Published online: 02 Nov 2023

References

  • Antipova, L. V., Ina, N. M. I., & Astanin, N. I. (1999). Soft drink. (RU 2125390 C1). https://www.lens.org/lens/patent/141-713-590-717-557/frontpage?l=en
  • Arpi, N., Rohaya, S., & Febriani, R. (2018). Surimi from freshwater fish with cryoprotectant sucrose, sorbitol, and sodium tripolyphosphate. IOP Conference Series: Earth and Environmental Science, 207(1), 012046. https://doi.org/10.1088/1755-1315/207/1/012046
  • Bashir, K. M. I., Kim, J. S., An, J. H., Sohn, J. H., & Choi, J. S. (2017). Natural Food additives and preservatives for fish-paste products: A review of the past, present, and future states of research. Journal of Food Quality, 2017, 1–31. https://doi.org/10.1155/2017/9675469
  • Benjakul, S., Chantarasuwan, C., & Visessanguan, W. (2003). Effect of medium temperature setting on gelling characteristics of surimi from some tropical fish. Food Chemistry, 82(4), 567–574. https://doi.org/10.1016/S0308-8146(03)00012-8
  • Benjakul, S., & Visessanguan, W. (2000). Pig plasma protein: Potential use as proteinase inhibitor for surimi manufacture; inhibitory activity and the active components. Journal of the Science of Food and Agriculture, 80(9), 1351–1356. https://doi.org/10.1002/1097-0010(200007)80:9<1351:AID-JSFA647>3.0.CO;2-I
  • Benjakul, S., Visessanguan, W., Thongkaew, C., & Tanaka, M. (2005). Effect of frozen storage on chemical and gel-forming properties of fish commonly used for surimi production in Thailand. Food Hydrocolloids, 19(2), 197–207. https://doi.org/10.1016/j.foodhyd.2004.05.004
  • Cao, M., Zhang, X., Zhu, Y., Liu, Y., Ma, L., Chen, X., Zou, L., & Liu, W. (2022). Enhancing the physicochemical performance of myofibrillar gels using Pickering emulsion fillers: Rheology, microstructure and stability. Food Hydrocolloids, 128, 128. https://doi.org/10.1016/j.foodhyd.2022.107606
  • Chen, L., Wang, P., Kang, Z. L., Li, K., Xie, C., Sun, J. X., & Xu, X. L. (2015). Effect of soybean oil emulsified and unemulsified with chicken plasma protein on the physicochemical properties of frankfurters. CyTA - Journal of Food, 13(3), 445–455. https://doi.org/10.1080/19476337.2014.998291
  • Dick, A., Bhandari, B., & Prakash, S. (2019). 3D printing of meat. Meat Science, 153, 35–44. https://doi.org/10.1016/j.meatsci.2019.03.005
  • Ding, J., Zhao, X., Li, X., & Huang, Q. (2022). Effects of different recovered sarcoplasmic proteins on the gel performance, water distribution and network structure of silver carp surimi. Food Hydrocolloids, 131, 131. https://doi.org/10.1016/j.foodhyd.2022.107835
  • Duangmal, K., & Taluengphol, A. (2010). Effect of protein additives, sodium ascorbate, and microbial transglutaminase on the texture and colour of red tilapia surimi gel. International Journal of Food Science and Technology, 45(1), 48–55. https://doi.org/10.1111/j.1365-2621.2009.02102.x
  • Escalante-Rodríguez, M. F., Murrieta-Martínez, C. L., Ocaño-Higuera, V. M., Ramírez-Wong, B., Ruiz-Cruz, S., Rodríguez-Olibarria, G., & Marquez-Rios, E. (2018). Effect of setting on the gelling properties of a protein concentrate from giant squid (Dosidicus gigas) mantle. Food Science & Technology, 38(3), 467–472. https://doi.org/10.1590/fst.01717
  • Fernández, C. L., Romero, M. C., Rolhaiser, F., Fogar, R. A., & Doval, M. M. (2021). Fat substitutes based on bovine blood plasma and flaxseed oil as functional ingredients. International Journal of Gastronomy and Food Science, 25, 100365. https://doi.org/10.1016/j.ijgfs.2021.100365
  • Fogaça, F. H. S., Trinca, L. A., Bombo, Á. J., & Silvia Sant’ana, L. (2013). Optimization of the surimi production from mechanically recovered fish meat (MRFM) using response surface methodology. Journal of Food Quality, 36(3), 209–216. https://doi.org/10.1111/jfq.12019
  • Fowler, M. R., & Park, J. W. (2015). Effect of salmon plasma protein on Pacific whiting surimi gelation under various ohmic heating conditions. LWT - Food Science and Technology, 61(2), 309–315. https://doi.org/10.1016/j.lwt.2014.12.049
  • Gaikwad, N. N., Kalal, A. Y., Suryavanshi, S. K., Patil, P. G., Sharma, D., & Sharma, J. (2021). Process optimization by response surface methodology for microencapsulation of pomegranate seed oil. Journal of Food Processing and Preservation, 45(6), 1–13. https://doi.org/10.1111/jfpp.15561
  • Gao, D., Guo, P., Cao, X., Ge, L., Ma, H., Cheng, H., Ke, Y., Chen, S., Ding, G., Feng, R., Qiao, Z., Bai, J., Nordin, N. I., & Ma, Z. (2020). Improvement of chicken plasma protein hydrolysate angiotensin I-converting enzyme inhibitory activity by optimizing plastein reaction. Food Science and Nutrition, 8(6), 2798–2808. https://doi.org/10.1002/fsn3.1572
  • Hurtado, S., Saguer, E., Toldrà, M., Parés, D., & Carretero, C. (2012). Porcine plasma as polyphosphate and caseinate replacer in frankfurters. Meat Science, 90(3), 624–628. https://doi.org/10.1016/j.meatsci.2011.10.004
  • Jarmoluk, A., & Pietrasik, Z. (2003). Response surface methodology study on the effects of blood plasma, microbial transglutaminase and κ-carrageenan on pork batter gel properties. Journal of Food Engineering, 60(3), 327–334. https://doi.org/10.1016/S0260-8774(03)00055-4
  • Jin, S. K., Choi, J. S., & Kim, G. D. (2021). Effect of porcine plasma hydrolysate on physicochemical, antioxidant, and antimicrobial properties of emulsion-type pork sausage during cold storage. Meat Science, 171, 108293. https://doi.org/10.1016/j.meatsci.2020.108293
  • Jommark, N., Runglerdkriangkrai, J., Konno, K., & Ratana-Arporn, P. (2018). Effect of cryoprotectants on suppression of protein structure deterioration induced by freeze-thaw cycle in Pacific white Shrimp. Journal of Aquatic Food Product Technology, 27(1), 91–106. https://doi.org/10.1080/10498850.2017.1404532
  • Kulkarni, A. K., Relekar, S. S., Joshi, S. A., Gore, S. B., & Pathan, J. G. K. (2019). Cryoprotective effect of maltodextrins on frozen storage of bleached horse mackerel (Megalapsis cordyla) minced meat. International Journal of Current Microbiology and Applied Sciences, 8(9), 1666–1677. https://doi.org/10.20546/ijcmas.2019.809.189
  • Kumar, G. S., SH, A., Krishnan, R., & Mohammed, T. (2021). Pasta: Raw materials, processing and quality improvement. The Pharma Innovation, 10(5), 185–197. https://doi.org/10.22271/tpi.2021.v10.i5Sc.6205
  • Lin, J., Hong, H., Zhang, L., Zhang, C., & Luo, Y. (2019). Antioxidant and cryoprotective effects of hydrolysate from gill protein of bighead carp (Hypophthalmichthys nobilis) in preventing denaturation of frozen surimi. Food Chemistry, 298, 124868. https://doi.org/10.1016/j.foodchem.2019.05.142
  • Liu, Q., Chen, Q., Kong, B., Han, J., & He, X. (2014). The influence of superchilling and cryoprotectants on protein oxidation and structural changes in the myofibrillar proteins of common carp (Cyprinus carpio) surimi. LWT - Food Science and Technology, 57(2), 603–611. https://doi.org/10.1016/j.lwt.2014.02.023
  • Liu, J., Wang, X., & Ding, Y. (2013). Optimization of adding konjac glucomannan to improve gel properties of low-quality surimi. Carbohydrate Polymers, 92(1), 484–489. https://doi.org/10.1016/j.carbpol.2012.08.096
  • Lynch, S. A., Mullen, A. M., O’Neill, E. E., & García, C. Á. (2017). Harnessing the potential of blood proteins as functional ingredients: A review of the state of the art in blood Processing. Comprehensive Reviews in Food Science and Food Safety, 16(2), 330–344. https://doi.org/10.1111/1541-4337.12254
  • Mohamad Said, K. A., & Mohamed Amin, M. A. (2016). Overview on the response surface methodology (RSM) in extraction processes. Journal of Applied Science & Process Engineering, 2(1), 8–17. https://doi.org/10.33736/jaspe.161.2015
  • Moosavi-Nasab, M., Asgari, F., & Oliyaei, N. (2019). Quality evaluation of surimi and fish nuggets from Queen fish (scomberoides commersonnianus). Food Science and Nutrition, 7(10), 3206–3215. https://doi.org/10.1002/fsn3.1172
  • Mullen, A. M., Álvarez, C., Zeugolis, D. I., Henchion, M., O’Neill, E., & Drummond, L. (2017). Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Science, 132, 90–98. https://doi.org/10.1016/j.meatsci.2017.04.243
  • Murphy, S. C., Gilroy, D., Kerry, J. F., Buckley, D. J., & Kerry, J. P. (2004). Evaluation of surimi, fat and water content in a low/no added pork sausage formulation using response surface methodology. Meat Science, 66(3), 689–701. https://doi.org/10.1016/j.meatsci.2003.07.001
  • Nishinari, K., Turcanu, M., Nakauma, M., & Fang, Y. (2019). Role of fluid cohesiveness in safe swallowing. Npj Science of Food, 3(1), 5. https://doi.org/10.1038/s41538-019-0038-8
  • Noor Eliza, M. R., Siti Roha, A. M., Norrizah, A. R., & Adi, M. S. (2021). Optimization of supercritical carbon dioxide extraction of fat and cholesterol from beef floss by response surface methodology. Food Research, 5(1), 232–245. https://doi.org/10.26656/fr.2017.5(1).239
  • Ofori, J. A., & Hsieh, Y. H. P. (2014). Issues related to the use of blood in food and animal feed. Critical Reviews in Food Science and Nutrition, 54(5), 687–697. https://doi.org/10.1080/10408398.2011.605229
  • Parés, D., Saguer, E., & Carretero, C. (2011). Blood by-products as ingredients in processed meat. Processed Meats: Improving Safety, Nutrition and Quality, 218–242. https://doi.org/10.1533/9780857092946.2.218
  • Patel, S., Kothari, D., & Goyal, A. (2011). Enhancement of dextransucrase activity of pediococcus pentosaceus mutant SPAm1 by response surface methodology. Indian Journal of Biotechnology, 10(3), 346–351. https://doi.org/10.1007/s13205-011-0018-4
  • Petcharat, T., Chaijan, M., & Karnjanapratum, S. (2021). Effect of furcellaran incorporation on gel properties of sardine surimi. International Journal of Food Science and Technology, 56(11), 5957–5967. https://doi.org/10.1111/ijfs.15246
  • Ramadhan, K., Huda, N., & Ahmad, R. (2012). Freeze-thaw stability of duck surimi-like materials with different cryoprotectants added. Poultry Science, 91(7), 1703–1708. https://doi.org/10.3382/ps.2011-01926
  • Rawdkuen, S., Benjakul, S., Visessanguan, W., & Lanier, T. C. (2004a). Chicken plasma protein affects gelation of surimi from bigeye snapper (priacanthus tayenus). Food Hydrocolloids, 18(2), 259–270. https://doi.org/10.1016/S0268-005X(03)00082-1
  • Rawdkuen, S., Benjakul, S., Visessanguan, W., & Lanier, T. C. (2004b). Chicken plasma protein: Proteinase inhibitory activity and its effect on surimi gel properties. Food Research International, 37(2), 156–165. https://doi.org/10.1016/j.foodres.2003.09.014
  • Rawdkuen, S., Benjakul, S., Visessanguan, W., & Lanier, T. C. (2007). Effect of chicken plasma protein and some protein additives on proteolysis and gel-forming ability of sardine (Sardinella Gibbosa) surimi. Journal of Food Processing and Preservation, 31(4), 492–516. https://doi.org/10.1111/j.1745-4549.2007.00132.x
  • Roze, M., Crucean, D., Diler, G., Rannou, C., Catanéo, C., Jonchère, C., Le-Bail, A., & Le-Bail, P. (2021). Impact of maltitol and sorbitol on technological and sensory attributes of biscuits. Foods, 10(11), 1–15. https://doi.org/10.3390/foods10112545
  • Ruiz-Hernández, A. A., Cárdenas-López, J. L., Cortez-Rocha, M. O., González-Aguilar, G. A., & Robles-Sánchez, R. M. (2021). Optimization of germination of white sorghum by response surface methodology for preparing porridges with biological potential. CyTA - Journal of Food, 19(1), 49–55. https://doi.org/10.1080/19476337.2020.1853814
  • Sharma, S., Majumdar, R. K., Siddhnath, K., Mehta, N. K., Saha, A., & Gupta, S. (2019). Effects of partial and complete replacement of synthetic cryoprotectant with carrot (Daucus carota) concentrated protein on stability of frozen surimi. Journal of Aquatic Food Product Technology, 28(8), 808–820. https://doi.org/10.1080/10498850.2019.1651807
  • Sharma, A., & Sogi, D. S. (2022). Optimization of enzyme aided pigment extraction from pumpkin (Cucurbita maxima Duch) using response surface methodology. Journal of Food Measurement and Characterization, 16(2), 1184–1194. https://doi.org/10.1007/s11694-021-01246-5
  • Shehata, M. G., Abd El Aziz, N. M., Youssef, M. M., & El-Sohaimy, S. A. (2021). Optimization conditions of ultrasound-assisted extraction of phenolic compounds from orange peels using response surface methodology. Journal of Food Processing and Preservation, 45(10), 1–10. https://doi.org/10.1111/jfpp.15870
  • Song, Y., Fu, Y., Huang, S., Liao, L., Wu, Q., Wang, Y., Ge, F., & Fang, B. (2021). Identification and antioxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus. Food Chemistry, 349, 129143. https://doi.org/10.1016/j.foodchem.2021.129143
  • Sousa, T. C. D. A., Silva, E. L. L., Ferreira, V. C. D. S., Madruga, M. S., & da Silva, F. A. P. (2022). Oxidative stability of green weakfish (Cynoscion virescens) by-product surimi and surimi gel enhanced with a spondias mombin L. waste phenolic-rich extract during cold storage. Food Bioscience, 50, 102021. https://doi.org/10.1016/j.fbio.2022.102021
  • Sutloet, P., Sompongse, W., & Morioka, K. (2018). Effect of protease inhibitors on proteolytic degradation of rohu (labeo rohita) gel. International Journal of Food Science and Technology, 53(11), 2509–2514. https://doi.org/10.1111/ijfs.13844
  • Tian, J., Walayat, N., Ding, Y., & Liu, J. (2022). The role of trifunctional cryoprotectants in the frozen storage of aquatic foods: Recent developments and future recommendations. Comprehensive Reviews in Food Science and Food Safety, 21(1), 321–339. https://doi.org/10.1111/1541-4337.12865
  • Toldrà, M., Lynch, S. A., Couture, R., & Álvarez, C. (2019). Blood proteins as functional ingredients. Sustainable Meat Production and Processing, 85–101. https://doi.org/10.1016/B978-0-12-814874-7.00005-5
  • Vasilevna, A. L., Evgenevna, U. M., & Aleksandrovna, M. I. (2018). Dry combined base for functional drinks. (Patent No. RU 2641710 C1). https://org/121-885-534-275-315
  • Verma, A. K., Chatli, M. K., Kumar, P., & Mehta, N. (2022). Assessment of quality attributes of porcine blood and liver hydrolysates incorporated pork loaves stored under aerobic and modified atmospheric packaging. Journal of Food Science and Technology, 59(3), 1114–1130. https://doi.org/10.1007/s13197-021-05115-3
  • Verma, A. K., Chatli, M. K., Mehta, N., & Kumar, P. (2018). Assessment of physico-chemical, antioxidant and antimicrobial activity of porcine blood protein hydrolysate in pork emulsion stored under aerobic packaging condition at 4 ± 1 °C. LWT, 88, 71–79. https://doi.org/10.1016/j.lwt.2017.10.002
  • Vladimirovich, B. V., Evich, V. V. G., Juldashevna, I. D., Ljudvigovich, L. S., Nikolaevna, L. I., & Alekseevich, P. V. (2010). Protein-peptide module for production of functional and specialised food products for persons experiencing intensive physical strain. https://lens.org/107-939-061-764-058
  • Walayat, N., Liu, J., Nawaz, A., Aadil, R. M., López-Pedrouso, M., Lorenzo, J. M., Xiong, H., Xiong, Z., Moreno, H. M., Nawaz, A., Niaz, N., & Randhawa, M. A. (2022). Role of cryoprotectants in surimi and factors affecting surimi gel properties: A review. Food Reviews International, 38(6), 1103–1122. https://doi.org/10.1080/87559129.2020.1768403
  • Wangtueai, S., & Noomhorm, A. (2009). Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT - Food Science and Technology, 42(4), 825–834. https://doi.org/10.1016/j.lwt.2008.11.014
  • Yingchutrakul, M., Wasinnitiwong, N., Benjakul, S., Singh, A., Zheng, Y., Mubango, E., Luo, Y., Tan, Y., & Hong, H. (2022). Asian carp, an alternative material for surimi production: Progress and future. Foods, 11(9), 1–26. https://doi.org/10.3390/foods11091318
  • Yolmeh, M., & Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10(3), 413–433. https://doi.org/10.1007/s11947-016-1855-2
  • Zhang, X., Zhang, Y., Ding, H., Zhang, W., & Dai, Z. (2022). Effect of washing times on the quality characteristics and protein oxidation of silver carp surimi. Foods, 11(16), 1–14. https://doi.org/10.3390/foods11162397
  • Zhou, W. J., Wang, F. X., Yu, J., Li, X. H., & Liu, Y. L. (2019). Cryoprotective effects of protein hydrolysates prepared from by-products of silver carp (Hypophthalmichthys Molitrix) on freeze-thawed surimi. Applied Sciences, 9(3), 563. https://doi.org/10.3390/app9030563
  • Zhu, Y., Lu, Y., Ye, T., Jiang, S., Lin, L., & Lu, J. (2022). The effect of salt on the gelling properties and protein phosphorylation of surimi-crabmeat mixed gels. Gels, 8(1), 10. https://doi.org/10.3390/gels8010010
  • Zou, Y., Lu, F., Yang, B., Ma, J., Yang, J., Li, C., Wang, X., Wang, D., & Xu, W. (2021). Effect of ultrasound assisted konjac glucomannan treatment on properties of chicken plasma protein gelation. Ultrasonics Sonochemistry, 80, 105821. https://doi.org/10.1016/j.ultsonch.2021.105821
  • Zou, Y., Yang, H., Li, P. P., Zhang, M. H., Zhang, X. X., Xu, W. M., & Wang, D. Y. (2019). Effect of different time of ultrasound treatment on physicochemical, thermal, and antioxidant properties of chicken plasma protein. Poultry Science, 98(4), 1925–1933. https://doi.org/10.3382/ps/pey502