436
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quinoa treated by an optimized method of microwave heating and their effect on antioxidant activity and phenolic compounds after in vitro gastrointestinal digestion

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 751-759 | Received 16 May 2023, Accepted 31 Oct 2023, Published online: 27 Nov 2023

References

  • Council for International Organizations of Medical Sciences (CIOMS). (2016). International ethical guidelines for health-related research involving humans (4th ed.). CIOMS
  • Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295–315. https://doi.org/10.1111/1541-4337.12253
  • Balakrishnan, G., & Schneider, R. G. (2020). Quinoa flavonoids and their bioaccessibility during in vitro gastrointestinal digestion. Journal of Cereal Science, 95(May), 103070. https://doi.org/10.1016/j.jcs.2020.103070
  • Burgos, G., Amoros, W., Muñoa, L., Sosa, P., Cayhualla, E., Sanchez, C., Díaz, C., & Bonierbale, M. (2013). Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. Journal of Food Composition and Analysis, 30(1), 6–12. https://doi.org/10.1016/j.jfca.2012.12.001
  • Chiu, H. F., Venkatakrishnan, K., Golovinskaia, O., & Wang, C. K. (2021). Gastroprotective effects of polyphenols against various gastro-intestinal disorders: A mini-review with special focus on clinical evidence. Molecules, 26(7), 2090. https://doi.org/10.3390/molecules26072090
  • de Lira Mota, K. S., Dias, G. E. N., Pinto, M. E. F., Luiz-Ferreira, Â., Monteiro Souza-Brito, A. R., Hiruma-Lima, C. A., Barbosa-Filho, J. M., & Batista, L. M. (2009). Flavonoids with gastroprotective activity. Molecules, 14(3), 979–1012. https://doi.org/10.3390/molecules14030979
  • Dini, I., Tenore, G. C., & Dini, A. (2010). LWT - Food science and technology antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT - Food Science and Technology, 43(3), 447–451. https://doi.org/10.1016/j.lwt.2009.09.010
  • Gu, R., Chang, X., Bai, G., Li, X., Di, Y., Liu, X., Sun, L., & Wang, Y. (2021). Effects of household cooking methods on changes of tissue structure, phenolic antioxidant capacity and active component bioaccessibility of quinoa. Food Chemistry, 350(October 2020), 129138. https://doi.org/10.1016/j.foodchem.2021.129138
  • Guzik, P., Szymkowiak, A., Kulawik, P., Zając, M., & Migdał, W. (2022). The confrontation of consumer beliefs about the impact of microwave-processing on food and human health with existing research. Trends in Food Science & Technology, 119(May 2021), 110–121. https://doi.org/10.1016/j.tifs.2021.11.011
  • Hernández-Ledesma, B. (2019). Quinoa (Chenopodium quinoa Willd.) as a source of nutrients and bioactive compounds: A review. Bioactive Compounds in Health and Disease, 2(3), 27–47. https://doi.org/10.31989/bchd.v2i3.556
  • Hidalgo, A., Ferraretto, A., De Noni, I., Bottani, M., Cattaneo, S., Galli, S., & Brandolini, A. (2018). Bioactive compounds and antioxidant properties of pseudocereals-enriched water biscuits and their in vitro digestates. Food Chemistry, 240, 799–807. https://doi.org/10.1016/j.foodchem.2017.08.014
  • Huang, K., Shi, J., Li, M., Sun, R., Guan, W., Cao, H., Guan, X., & Zhang, Y. (2022). Intervention of microwave irradiation on structure and quality characteristics of quinoa protein aggregates. Food Hydrocolloids, 130(February), 107677. https://doi.org/10.1016/j.foodhyd.2022.107677
  • Khursheed, R., Singh, S. K., Wadhwa, S., Gulati, M., & Awasthi, A. (2020). Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discovery Today, 25(1), 209–222. https://doi.org/10.1016/j.drudis.2019.11.001
  • Lee, K. M., Kalyani, D., Tiwari, M. K., Kim, T. S., Dhiman, S. S., Lee, J. K., & Kim, I. W. (2012). Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast yarrowia lipolytica. Bioresource Technology, 123, 636–645. https://doi.org/10.1016/j.biortech.2012.07.066
  • Mariod, A. A., & Salama, S. M. (2020). The efficacy of processing strategies on the gastroprotective potentiality of Chenopodium quinoa seeds. Scientific World Journal, 2020, 1–16. https://doi.org/10.1155/2020/6326452
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., MacIerzanka, A., MacKie, A., … Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food – an international consensus. Food and Function, 5(6), 1113–1124. https://doi.org/10.1039/c3fo60702j
  • Nickel, J., Spanier, L. P., Botelho, F. T., Gularte, M. A., & Helbig, E. (2016). Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains. Food Chemistry, 209, 139–143. https://doi.org/10.1016/j.foodchem.2016.04.031
  • Paśko, P., Tyszka-Czochara, M., Namieśnik, J., Jastrzębski, Z., Leontowicz, H., Drzewiecki, J., Martinez-Ayala, A. L., Nemirovski, A., Barasch, D., & Gorinstein, S. (2019). Cytotoxic, antioxidant and binding properties of polyphenols from the selected gluten-free pseudocereals and their by-products: In vitro model. Journal of Cereal Science, 87, 325–333. https://doi.org/10.1016/j.jcs.2019.04.009
  • Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernandez-Lopez, J., Perez-Alvarez, J. A., & Viuda-Martos, M. (2018). Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Industrial Crops and Products, 111, 38–46. https://doi.org/10.1016/j.indcrop.2017.10.006
  • Pellegrini, M., Lucas-Gonzalez, R., Fernández-López, J., Ricci, A., Pérez-Álvarez, J. A., Sterzo, C. L., & Viuda-Martos, M. (2017). Bioaccessibility of polyphenolic compounds of six quinoa seeds during in vitro gastrointestinal digestion. Journal of Functional Foods, 38, 77–88. https://doi.org/10.1016/j.jff.2017.08.042
  • Ragaee, S., Seetharaman, K., & Abdel-Aal, E. S. M. (2014). The impact of milling and thermal processing on phenolic compounds in Cereal grains. Critical Reviews in Food Science and Nutrition, 54(7), 837–849. https://doi.org/10.1080/10408398.2011.610906
  • Rasera, G. B., de Camargo, A. C., & de Castro, R. J. S. (2023). Bioaccessibility of phenolic compounds using the standardized INFOGEST protocol: A narrative review. Comprehensive Reviews in Food Science and Food Safety, 22(1), 260–286. https://doi.org/10.1111/1541-4337.13065
  • Repo-Carrasco-Valencia, R., Hellström, J. K., Pihlava, J. M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128–133. https://doi.org/10.1016/j.foodchem.2009.09.087
  • Ruiz Hernández, A. A., Rouzaud Sández, O., Frías, J., Ayala Zavala, F., Astiazarán García, H., & Robles Sánchez, M. (2022). Optimization of the duration and intensity of UV-A radiation to obtain the highest free phenol content and antioxidant activity in sprouted sorghum (sorghum bicolor L Moench). Plant Foods for Human Nutrition, 77(2), 317–318. https://doi.org/10.1007/s11130-021-00938-z
  • Ruiz-Hurtado, P. A., Garduño-Siciliano, L., Dominguez-Verano, P., Martinez-Galero, E., Canales-Martinez, M. M., & Rodriguez-Monroy, M. A. (2021). Evaluation of the gastroprotective effects of Chihuahua propolis on indomethacin-induced gastric ulcers in mouse. Biomedicine & Pharmacotherapy, 137, 111345. https://doi.org/10.1016/j.biopha.2021.111345
  • Ruiz-Rodríguez, A., Marín, F. R., Ocaña, A., & Soler-Rivas, C. (2008). Effect of domestic processing on bioactive compounds. Phytochemistry Reviews, 7(2), 345–384. https://doi.org/10.1007/s11101-007-9073-1
  • Salazar-López, N. J., González-Aguilar, G. A., Rouzaud-Sández, O., & Robles-Sánchez, M. (2018). Bioaccessibility of hydroxycinnamic acids and antioxidant capacity from sorghum bran thermally processed during simulated in vitro gastrointestinal digestion. Journal of Food Science and Technology, 55(6), 2021–2030. https://doi.org/10.1007/s13197-018-3116-z
  • Salazar Lopez, N. J., Loarca-Piña, G., Campos-Vega, R., Gaytán Martínez, M., Morales Sánchez, E., Esquerra-Brauer, J. M., Gonzalez-Aguilar, G. A., & Robles Sánchez, M. (2016). The extrusion process as an alternative for improving the biological potential of sorghum bran: Phenolic compounds and Antiradical and anti-inflammatory capacity. Evidence-Based Complementary and Alternative Medicine, 2016(September), 1–8. https://doi.org/10.1155/2016/8387975
  • Shahidi, F., & Peng, H. (2018). Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives, 4, 11–68. https://doi.org/10.31665/JFB.2018.4162
  • Sharanagat, V. S., Suhag, R., Anand, P., Deswal, G., Kumar, R., Chaudhary, A., Singh, L., Singh Kushwah, O., Mani, S., Kumar, Y., & Nema, P. K. (2019). Physico-functional, thermo-pasting and antioxidant properties of microwave roasted sorghum [Sorghum bicolor (L.) Moench]. Journal of Cereal Science, 85(December 2018), 111–119. https://doi.org/10.1016/j.jcs.2018.11.013
  • Sharma, S., Kataria, A., & Singh, B. (2022). Effect of thermal processing on the bioactive compounds, antioxidative, antinutritional and functional characteristics of quinoa (Chenopodium quinoa). Lwt, 160(February), 113256. https://doi.org/10.1016/j.lwt.2022.113256
  • Sun, Y., Ma, N., Yi, J., Zhou, L., & Cai, S. (2021). Gastroprotective effect and mechanisms of Chinese sumac fruits (Rhus chinensis Mill.) on ethanol-induced gastric ulcers in mice. Food & Function, 12(24), 12565–12579. https://doi.org/10.1039/D1FO02864B
  • Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380–388. https://doi.org/10.1016/j.foodchem.2014.06.018
  • Tian, J., Chen, J., Ye, X., & Chen, S. (2016). Health benefits of the potato affected by domestic cooking: A review. Food Chemistry, 202, 165–175. https://doi.org/10.1016/j.foodchem.2016.01.120
  • Valenzuela-González, M., Rouzaud-Sández, O., Ledesma-Osuna, A. I., Astiazarán-García, H., Salazar-López, N. J., Vidal-Quintanar, R. L., & Robles-Sánchez, M. (2022). Bioaccessibility of phenolic compounds, antioxidant activity, and consumer acceptability of heat-treated quinoa cookies. Food Science & Technology, 2061, 1–8. https://doi.org/10.1590/fst.43421
  • Vega Gálvez, A., Zura, L., Lutz, M., Jagus, R. J., Agüero, M. V., Pastén, A., Scala, K. D., & Uribe, E. (2018). Assessment of dietary fiber, isoflavones and phenolic compounds with antioxidant and antimicrobial properties of quinoa (Chenopodium quinoa Willd). Chilean Journal of Agricultural & Animal Sciences, 34(1), 57–67. https://doi.org/10.4067/S0719-38902018005000101
  • Velderrain-Rodríguez, G. R., Palafox-Carlos, H., Wall-Medrano, A., Ayala-Zavala, J. F., Chen, C. Y. O., Robles-Sánchez, M., Astiazaran-García, H., Alvarez-Parrilla, E., & González-Aguilar, G. A. (2014). Phenolic compounds: Their journey after intake. Food and Function, 5(2), 189–197. https://doi.org/10.1039/c3fo60361j
  • Vidaurre-Ruiz, J. M., Días-Rojas, G., Mendoza-Llamo, E., & Solano-Cornejo, M. Á. (2017). Variación del contenido de Betalaínas, compuestos fenólicos y capacidad antioxidante durante el procesamiento de la quinua (Chenopodium quinoa W). Revista de la Sociedad Química del Perú, 83(3), 319–330. https://doi.org/10.37761/rsqp.v83i3.116
  • Zhang, Y., Yan, Y., Li, W., Huang, K., Li, S., Cao, H., & Guan, X. (2022). Microwaving released more polyphenols from black quinoa grains with hypoglycemic effects compared with traditional cooking methods. Journal of the Science of Food and Agriculture, 102(13), 5948–5956. https://doi.org/10.1002/jsfa.11947