737
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of processing methods on nutrient and anti-nutrient composition of grasshopper and termites

, , &
Pages 745-750 | Received 10 Aug 2023, Accepted 02 Nov 2023, Published online: 20 Nov 2023

References

  • Ademola, O. A., Omolara, A. H., & Abioye, O. R. (2017). Amino acids profile of bee brood, soldier termite, snout beetle larva, silkworm larva, and pupa: Nutritional implications. Advances in Analytical Chemistry, 7, 31–38.
  • Agbaire, P. O. (2011). Nutritional and anti-nutritional levels of some local vegetables (Vernomia anydalira, Manihot esculenta, Teiferia occidentalis, Talinum triangulare, Amaranthus spinosus) from Delta State, Nigeria. Journal of Applied Sciences and Environmental Management, 15(4), 625–628.
  • Anyuor, S., Ayieko, M., & Amulen, D. (2021). Utilization of alate termites (Macroterme spp) to improve nutritional security among households in Vihiga County-Kenya. Journal of Agriculture Science & Technology, 20(3), 82–93.
  • AOAC. (2006). Official methods of analysis. The Association of Official Analytical Chemists
  • Banjo, A. D., Lawal, O. A., & Songonuga, E. A. (2006). The nutritional value of fourteen species of edible insects in Southwestern Nigeria. African Journal of Biotechnology, 5(3), 298–301.
  • Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: A critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296–313. https://doi.org/10.1111/1541-4337.12014
  • Bikila, A. M., Tola, Y., Esho, T. B., & Forsido, S. F. (2020). Effect of predrying treatment and drying temperature on proximate composition, mineral contents, and thermophysical properties of anchote (coccinia abyssinica (Lam.) cogn.) flour. Food Science & Nutrition, 8(10), 5532–5544. https://doi.org/10.1002/fsn3.1860
  • Bliss, J. R., Njenga, M., Stoltzfus, R. J., & Pelletier, D. L. (2016). Stigma as a barrier to treatment for child acute malnutrition in Marsabit Country, Kenya. Maternal and Child Nutrition, 12(1), 125–138. https://doi.org/10.1111/mcn.12198
  • Bryant, C. J. (2022). Plant-based animal product alternatives are healthier and more environmentally sustainable than animal products. Future Foods, 6, 100174. https://doi.org/10.1016/j.fufo.2022.100174
  • Ebenebe, C. I., Amobi, M. I., Udegbala, C., Ufele, A. N., & Nweze, B. O. (2017). Survey of edible insect consumption in South-Eastern Nigeria. Journal of Insects as Food and Feed, 3(4), 241–252. https://doi.org/10.3920/JIFF2017.0002
  • Ekop, E. A., Udoh, A. I., & Akpan, P. E. (2010). Proximate and anti-nutrient composition of four edible insects in Akwa Ibom State, Nigeria. World Journal of Applied Science and Technology, 2(2), 224–231.
  • Essack, H., Odhav, B., & Mellem, J. J. (2017). Screening of traditional South African leafy vegetables for specific anti-nutritional factors before and after processing. Journal of Food Science and Technology, 37(3), 462–471. https://doi.org/10.1590/1678-457x.20416
  • Finke, M. D. (2015). Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biology, 34(6), 554–564. https://doi.org/10.1002/zoo.21246
  • Ghosh, S., Lee, S. M., Jung, C., & Meyer-Rochow, V. B. (2017). Nutritional composition of five commercial edible insects in South Korea. Journal of Asia-Pacific Entomology, 20(2), 686–694. https://doi.org/10.1016/j.aspen.2017.04.003
  • Grabowski, N. T. (2020). Microbiology of African edible insects. In African edible insects as alternative source of food, oil, protein and bioactive components. (pp. 59–81). Springer.
  • Hassan, A., Sani, I., Maiangwa, M., & Rahman, S. (2009). The effect of replacing graded levels of fishmeal with grasshopper meal in broiler starter diet. PAT 5: 30-–38 Pakistan. Journal of Nutrition, 7, 325–329.
  • Idowu, A. B., Oliyide, E. O., Ademolu, K. O., & Bamidele, J. A. (2019). Nutritional and anti-nutritional evaluation of three edible insects consumed by the Abeokuta community in Nigeria. International Journal of Tropical Insect Science, 39(2), 157–163. https://doi.org/10.1007/s42690-019-00021-w
  • Joye, I. (2019). Protein digestibility of cereal products. Foods, 8(6), 199. https://doi.org/10.3390/foods8060199
  • Kenya Bureau of Standards. (2017). Dried insect products for compounding animal feeds - Specification KS 2117: ICS 65.120.
  • Kinyuru, J. N. U. (2014). Nutrient composition and utilization of edible termites (Macrotermes subhylanus) and grasshoppers (Ruspolia differenes) from Lake Victoria Region of Kenya [ Doctoral dissertation].
  • Kinyuru, J. N., Kenji, G. M., Njoroge, S. M., & Ayieko, M. (2010). Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food and Bioprocess Technology, 3(5), 778–782. https://doi.org/10.1007/s11947-009-0264-1
  • Kinyuru, J. N., Konyole, S. O., Onyango-Omolo, S. A., Kenji, G. M., Onyango, C. A., Owino, V. O., Owuor, B. O., Estambale, B. B., & Roos, N. (2015). Nutrients, functional properties, storage stability and costing of complementary foods enriched with either termites and fish or commercial micronutrients. Journal of Insects as Food and Feed, 1(2), 149–158. https://doi.org/10.3920/JIFF2014.0011
  • Kinyuru, J. N., Konyole, S. O., Roos, N., Onyango, C. A., Owino, V. O., Owuor, B. O., Estambale, B.B., Friis, H., Aagaard-Hansen, J., & Kenji, G. M. (2013). Nutrient composition of four species of winged termites consumed in western Kenya. Journal of Food Composition and Analysis, 30(2), 120–124. https://doi.org/10.1016/j.jfca.2013.02.008
  • Kinyuru, J. N., Nyangena, D., Kamau, E., Ndiritu, A., Muniu, J., Kipkoech, C., Weru, J., Ndung’u, N., & Mmari, M. (2018). The role of edible insects in diets and Nutrition in East Africa. In A. Halloran, R. Flore, P. Vantomme, & N. Roos (Eds.), Edible insects in sustainable food systems. (pp. 93–108). Springer International Publishing.
  • Kouřimská, L., & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22–26.
  • Kunatsa, Y., Chidewe, C., & Zvidzai, C. J. (2020). Phytochemical and anti-nutrient composite from selected marginalized Zimbabwean edible insects and vegetables. Journal of Agriculture and Food Research, 2, 100027. https://doi.org/10.1016/j.jafr.2020.100027
  • Kunyanga, C. N., Imungi, J. K., Okoth, M. W., Biesalski, H. K., & Vadivel, V. (2011). Antioxidant and type 2 diabetes related functional properties of phytic acid extract from Kenyan local food ingredients: Effects of traditional processing methods. Ecology of Food and Nutrition, 50(5), 452–471. https://doi.org/10.1080/03670244.2011.604588
  • Lange, K. W., & Nakamura, Y. (2021). Edible insects as future food: Chances and challenges. Journal of Future Foods, 1(1), 38–46. https://doi.org/10.1016/j.jfutfo.2021.10.001
  • Madibela, O. R., Seitiso, T. K., Thema, T. F., & Letso, M. (2007). Effect of traditional processing methods on chemical composition and in vitro true dry matter digestibility of the mophane worm (Imbrasia belina). Journal of Arid Environments, 68(3), 492–50. https://doi.org/10.1016/j.jaridenv.2006.06.002
  • Magara, H. J., Niassy, S., Ayieko, M. A., Mukundamago, M., Egonyu, J. P., Tanga, C. M., Kimathi, E. K., Ongere, J. O., Fiaboe, K. K. M., Hugel, S., Orinda, M. A., Roos, N., & Ekesi, S. (2021). Edible crickets (Orthoptera) around the world: Distribution, nutritional value, and other benefits—A review. Frontiers in Nutrition, 7, 257. https://doi.org/10.3389/fnut.2020.537915
  • Manditsera, F. A., Luning, P. A., Fogliano, V., & Lakemond, C. M. M. (2019). Effect of domestic cooking methods on protein digestibility and mineral bioaccessibility of wild harvested adult edible insects. Food Research International, 121, 404–411. https://doi.org/10.1016/j.foodres.2019.03.052
  • Master, W. A., Nene, M. D., & Bell, W. (2017). Nutrient composition of premixed and packaged complementary foods for sale in low and middle-income countries: Lack of standards threatens infant growth. Maternal & Child Nutrition, 13(4), e12421. https://doi.org/10.1111/mcn.12421
  • Meyer-Rochow, V. B., Gahukar, R. T., Ghosh, S., & Jung, C. (2021). Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods, 10(5), 1036. https://doi.org/10.3390/foods10051036
  • Mutungi, C., Irungu, F. G., Nduko, J., Mutua, F., Affognon, H., Nakimbugwe, D., Ekesi, S., & Fiaboe, K. K. M. (2019). Postharvest processes of edible insects in Africa: A review of processing methods, and the implications for nutrition, safety and new products development. Critical Reviews in Food Science and Nutrition, 59(2), 276–298. https://doi.org/10.1080/10408398.2017.1365330
  • Nwozor, A., OLANREWAJU, J., & Ake, M. (2019). National insecurity and the challenges of food insecurity in Nigeria. Academic Journal of Interdisciplinary Studies, 8(4), 9–20. https://doi.org/10.36941/ajis-2019-0032
  • Oibiokpa, F. I., Akanya, H. O., Jigam, A. A., & Saidu, A. N. (2017). Nutrient and anti-nutrients compositions of some edible insect species in northern Nigeria. Fountain Journal of Natural and Applied Sciences, 6(1), 9–24. https://doi.org/10.53704/fujnas.v6i1.159
  • Olatoye, K. K., & Arueya, G. L. (2019). Nutrient and phytochemical composition of flour made from selected cultivars of aerial yam (Dioscorea bulbifera) in Nigeria. Journal of Food Composition and Analysis, 79, 23–27. https://doi.org/10.1016/j.jfca.2018.12.007
  • Omotoso, O. T. (2015). Nutrient composition, mineral analysis and anti-nutrient factors of oryctes rhinoceros L. (Scarabaeidae: Coleoptera) and winged termites, marcrotermes nigeriensis sjostedt. (Termitidae: Isoptera). British Journal of Applied Science & Technology, 8(1), 97–106. https://doi.org/10.9734/BJAST/2015/15344
  • Omotoso, O. T., & Adesola, A. A. (2018). Comparative studies of the nutritional composition of some insect orders. International Journal of Entomological Research, 2(1), 1–9.
  • Paul, B. N., Chanda, S., Das, S., Singh, P., Pandey, B. K., & Giri, S. S. (2014). Mineral assay in atomic absorption spectroscopy mineral assay in atomic absorption spectroscopy. The Beats of Natural Sciences, 1(4), 1–17.
  • Raubenheimer, D., & Rothman, J. M. (2013). Nutritional ecology of entomophagy in humans and other primates. Annual Review of Entomology, 58(1), 141–160. https://doi.org/10.1146/annurev-ento-120710-100713
  • Roos, N., & Van Huis, A. (2017). Consuming insects: Are there health benefits? Journal of Insects as Food and Feed, 3(4), 225–229. https://doi.org/10.3920/JIFF2017.x007
  • Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 57(5), 802–823. https://doi.org/10.1002/mnfr.201200735
  • Sahito, M. A., Narejo, T., Ansari, I. T., Suheryani, I., Ansari, Z. A., Shah, S. R., & Shah, S. R. (2022). Proximate analysis of non-conventional animal sources for the partial or complete replacement of feal meal. Journal of Biotechnology Pakistan, 19(2), 129–135. https://doi.org/10.34016/pjbt.2022.19.2.105
  • Saka, E. A. (2015). Development of improved solar fish drying process and quality Evaluation of dried anchovies (Engraulis encrasicolus) [ Doctoral dissertation]. University Of Ghana.
  • Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition, 2(1), 1–14. https://doi.org/10.1186/s43014-020-0020-5
  • Sayed, W. A. A., Ibrahim, N. S., Hatab, M. H., Zhu, F., & Rumpold, B. A. (2019). Comparative study of the use of insect meal from Spodoptera littoralis and bactrocera zonata for feeding Japanese quail chicks. Animals, 9(4), 3456–3547. https://doi.org/10.3390/ani9040136
  • Scala, A., Cammack, J. A., Salvia, R., Scieuzo, C., Franco, A., Bufo, S. A., Tomberlin, J. K., & Falabella, P. (2020). Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.)(Diptera: Stratiomyidae) larvae produced at an industrial scale. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-76571-8
  • Shockley, M., & Dossey, A. T. (2014). Insects for human consumption. In Mass production of beneficial organisms (pp. 617–652). Academic Press.
  • Sprangers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., Michiels, J., Eeckhout, M., De Clercq, P., & De Smet, S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture, 97(8), 2594–2600. https://doi.org/10.1002/jsfa.8081
  • Ssepuuya, G., Smets, R., Nakimbugwe, D., Van Der Borght, M., & Claes, J. (2019). Nutrient composition of the long-horned grasshopper ruspolia differens serville: Effect of swarming season and sourcing geographical area. Food Chemistry, 301, 125305. https://doi.org/10.1016/j.foodchem.2019.125305
  • Thakur, N. S., & Kumar, P. (2017). Anti-nutritional factors, their adverse effects and need for adequate processing to reduce them in food. AgricInternational, 4(1), 56–60. https://doi.org/10.5958/2454-8634.2017.00013.4
  • Usman, H. S., & Yusuf, A. A. (2021). Legislation and legal frame work for sustainable edible insects use in Nigeria. International Journal of Tropical Insect Science, 41(3), 2201–2209. https://doi.org/10.1007/s42690-020-00291-9
  • Van Huis, A. (2016). Edible insects are the future? The Proceedings of the Nutrition Society, 75(3), 294–305. https://doi.org/10.1017/S0029665116000069
  • Weru, J., Chege, P., & Kinyuru, J. (2021). Nutritional potential of edible insects: A systematic review of published data. International Journal of Tropical Insect Science, 41(3), 2015–2037. https://doi.org/10.1007/s42690-021-00464-0