641
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Distribution of nutrients, bioactive compounds, and antioxidant properties of grain-based milling fractions of Glycine max L

, , , , , , , , , , & show all
Article: 2290831 | Received 17 Oct 2023, Accepted 29 Nov 2023, Published online: 30 Jan 2024

References

  • Ajila, C. M., & Prasada Rao, U. (2009). Purification and characterization of black gram (Vigna mungo L.) husk peroxides. Journal of Molecular Catalysis B, Enzymatic, 60(1–2), 36–10. https://doi.org/10.1016/j.molcatb.2009.03.014
  • Alu’datt, M. H., Rababah, T., Ereifej, K., & Alli, I. (2013). Distribution, antioxidant and characterisation of phenolic compounds in soybeans, flaxseed and olives. Food Chemistry, 139(1–4), 93–99. https://doi.org/10.1016/j.foodchem.2012.12.061
  • Bähr, M., Fechner, A., Hasenkopf, K., Mittermaier, S., & Jahreis, G. (2014). Chemical composition of dehulled seeds of selected lupin cultivars in comparison to pea and soya bean. LWT-Food Science and Technology, 59(1), 587–590. https://doi.org/10.1016/j.lwt.2014.05.026
  • Begum, N., Xiao, Y., Wang, L., Li, D., Irshad, A., & Zhao, T. (2023). Arbuscular mycorrhizal fungus rhizophagus irregularis alleviates drought stress in soybean with overexpressing the GmSPL9d gene by promoting photosynthetic apparatus and regulating the antioxidant system. Microbiology Research, 273, 127398. https://doi.org/10.1016/j.micres.2023.127398
  • Berhow, M. A., Kong, S. B., Vermillion, K. E., & Duval, S. M. (2006). Complete quantification of group a and group B soyasaponins in soybeans. Journal of Agricultural and Food Chemistry, 54(6), 2035–2044. https://doi.org/10.1021/jf053072o
  • Canaan, J. M. M., Brasil, G. S. A. P., de Barros, N. R., Mussagy, C. U., Guerra, N. B., & Herculano, R. D. (2022). Soybean processing wastes and their potential in the generation of high value added products. Food Chemistry, 373, 131476. https://doi.org/10.1016/j.foodchem.2021.131476
  • Chaya, H. C., Kumar, S. S., Jayarama, S., & Mahadevappa, P. (2022). Comprehensive nutritional analysis, antioxidant activities, and bioactive compound characterization from seven selected cereals and pulses by UHPLC-HRMS/MS. ACS Omega, 7(35), 31377–31387. https://doi.org/10.1021/acsomega.2c03767
  • Das, K. S., & Singh, V. (2016). Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea Mays L.) genotypes. Food Chemistry, 201, 298–306. https://doi.org/10.1016/j.foodchem.2016.01.099
  • FAO/WHO. (1991). Protein quality evaluation report of joint FAO/WHO expert consultation, food and agriculture organization of the United Nations. FAO Food and Nutrition Paper, 51, 247.
  • Girish, T. K., Pratape, V. M., & Prasada Rao, U. J. S. (2012). Nutrient distribution, phenolic acid composition, antioxidant and alpha-glucosidase inhibitory potentials of black gram (Vigna mungo L.) and its milled by-products. Food Research International, 46(1), 370–377. https://doi.org/10.1016/j.foodres.2011.12.026
  • He, F., & Chen, J. (2013). Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence, differences between Chinese women and women in Western countries and possible mechanisms. Food Science and Human Wellness, 2(3–4), 146–161. https://doi.org/10.1016/j.fshw.2013.08.002
  • Herwig, N., Stephan, K., Panne, U., Pritzkow, W., & Vogl, J. (2011). Multi-element screening in milk and feed by SF-ICP-MS. Food Chemistry, 124(3), 1223–1230. https://doi.org/10.1016/j.foodchem.2010.07.050
  • Holecek, M. (2002). Relation between glutamine, branched chain amino acids and protein metabolism. Nutrition, 18(2), 130–133. https://doi.org/10.1016/S0899-9007(01)00767-5
  • Jiang, G.-L., Rajcan, I., Zhang, Y.-M., Han, T., & Mian, R. (2023). Editorial: Soybean molecular breeding and genetics. Frontiers in Plant Science, 14, 1157632. https://doi.org/10.3389/fpls.2023.1157632
  • Kamani, M. H., & Meera, M. S. (2021). Assessment of black gram milling by-product as a potential source of nutrients. Journal of Food Science and Technology, 58(10), 3844–3852. https://doi.org/10.1007/s13197-020-04845-0
  • Kim, M. A., & Kim, M. J. (2020). Isoflavone profiles and antioxidant properties in different parts of soybean sprout. Journal of Food Science, 85(3), 689–695. https://doi.org/10.1111/1750-3841.15058
  • Kim, J. K., Kim, E. H., Park, I., Yu, B. R., Lim, J. D., Lee, Y. S., Lee, J. H., Kim, S. H., & Chung, I. M. (2014). Isoflavones profiling of soybean [Glycine max (L.) Merrill] germplasms and their correlations with metabolic pathways. Food Chemistry, 153, 258–264. https://doi.org/10.1016/j.foodchem.2013.12.066
  • Kim, S. L., Lee, J. E., Kwon, Y. U., Kim, W. H., Jung, G. H., Kim, D. W., Lee, C. K., Lee, Y. Y., Kim, M. J., Kim, Y. H., Hwang, T. Y., & Chung, I. M. (2013). Introduction and nutritional evaluation of germinated soy germ. Food Chemistry, 136(2), 491–500. https://doi.org/10.1016/j.foodchem.2012.08.022
  • Kong, S., & Lee, J. (2010). Antioxidants in milled fractions of black rice cultivars. Food Chemistry, 120(1), 278–281. https://doi.org/10.1016/j.foodchem.2009.09.089
  • Liang, Q., Cui, J., Li, H., Liu, J., & Zhao, G. (2013). Florets of sunflower (Helianthus Annuus L.), potential new sources of dietary fiber and phenolic acids. Journal of Agricultural and Food Chemistry, 61(14), 3435–3442. https://doi.org/10.1021/jf400569a
  • Liu, J., Yang, C., Zhang, Q., Lou, Y., Wu, H., Deng, J., Yang, F., & Yang, W. (2016). Partial improvements in the flavor quality of soybean seeds using intercropping systems with appropriate shading. Food Chemistry, 207, 107–114. https://doi.org/10.1016/j.foodchem.2016.03.059
  • Manco, A., Gerardi, C., Romano, G., D’Amico, L., Blanco, A., Milano, F., DiSansebastiano, G. P., Balech, R., & Laddomada, B. (2023). Phenolic profile of whole seeds and seed fractions of lentils and its impact on antioxidant activity. Food Bioscience, 102887. https://doi.org/10.1016/j.fbio.2023.102887
  • Maria John, K. M., Natarajan, S., & Luthria, D. L. (2016). Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions. Food Chemistry, 211, 347–355. https://doi.org/10.1016/j.foodchem.2016.05.055
  • Multari, S., Neacsu, M., Scobbie, L., Cantlay, L., Duncan, G., Vaughan, N., Stewart, D., & Russell, W. R. (2016). Nutritional and phytochemical content of high-protein crops. Journal of Agricultural and Food Chemistry, 64(41), 7800–7811. https://doi.org/10.1021/acs.jafc.6b00926
  • Qin, P., Wang, T., & Luo, Y. (2022). (2022). A review on plant-based proteins from soybean, health benefits and soy product development. Journal of Agriculture and Food Research, 7, 100265. https://doi.org/10.1016/j.jafr.2021.100265
  • Rayaprolu, S., Hettiarachchy, N., Horax, R., Satchithanandam, E., Chen, P., & Mauromoustakos, A. (2015). Amino acid profiles of 44 soybean lines and ACE‐I inhibitory activities of peptide fractions from selected lines. Journal of the American Oil Chemists’ Society, 92(7), 1023–1033. https://doi.org/10.1007/s11746-015-2655-y
  • Sinkovič, L., Deželak, M., Kopinˇ, R., & Meglič, V. (2022). Macro/Microelements, nutrients and bioactive components in common and Tartary buckwheat (Fagopyrum spp.) grain and stone-milling fractions. LWT - Food Science & Technology, 161, 113422. https://doi.org/10.1016/j.lwt.2022.113422
  • Sreerama, Y. N., Neelam, D. A., Sashikala, V. B., & Pratape, V. M. (2010). Distribution of nutrients and antinutrients in milled fractions of chickpea and horse gram, seed coat phenolics and their distinct modes of enzyme inhibition. Journal of Agricultural and Food Chemistry, 58(7), 4322–4330. https://doi.org/10.1021/jf903101k
  • Tsantili, E., Konstantinidis, K., Christopoulos, M. V., & Roussos, P. A. (2011). Total phenolics and flavonoids and total antioxidant capacity in pistachio (Pistachia vera L.) nuts in relation to cultivars and storage conditions. Scientia Horticulturae, 129(4), 694–701. https://doi.org/10.1016/j.scienta.2011.05.020
  • Tyug, T. S., Prasad, K. N., & Ismail, A. (2010). Antioxidant capacity, phenolics and isoflavones in soybean by-products. Food Chemistry, 123(3), 583–589. https://doi.org/10.1016/j.foodchem.2010.04.074
  • U.S. Department of Agriculture. (2023). World soybean production 2022/2023. https://www.fas.usda.gov/data/commodities/soybeans
  • WHO. (2007). Protein and amino acid requirements in human nutrition. World Health Organization Technical Report Series, 935, 1–265. https://apps.who.int/iris/handle/10665/43411
  • Xue, Z., Wang, C., Zhai, L., Yu, W., Chang, H., Kou, X., & Zhou, F. (2016). Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech Journal of Food Sciences, 34(1), 68–78. https://doi.org/10.17221/434/2015-CJFS
  • Yang, H., Gaob, J., Yang, A., & Chen, H. (2015). The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food Research International, 77(4), 704–710. https://doi.org/10.1016/j.foodres.2015.01.011
  • Zhang, M., Xu, Y., Xiang, J., Zheng, B., Yuan, Y., Luo, D., & Fan, J. (2021). Comparative evaluation on phenolic profiles, antioxidant properties and α-glucosidase inhibitory effects of different milling fractions of foxtail millet. Journal of Cereal Science, 99, 103217. https://doi.org/10.1016/j.jcs.2021.103217
  • Zhao, H., Zhu, M., Wang, K., Yang, E., Su, J., Wang, Q., Cheng, N., Xue, C., Wuc, L., & Cao, W. (2020). Identification and quantitation of bioactive components from honeycomb (Nidus Vespae). Food Chemistry, 314, 126052. https://doi.org/10.1016/j.foodchem.2019.126052
  • Žilić, S., Serpen, A., Serpen, A., Perić, V., & Gökmen, V. (2013). Comparisons of phenolic compounds, isoflavones, antioxidant capacity and oxidative enzymes in yellow and black soybeans seed coat and dehulled bean. European Food Research and Technology, 237(3), 409–418. 10.1007/s00217-013-2005-y