1,242
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review on the application, health usage, and negative effects of molasses

, , , , &
Article: 2321984 | Received 02 Jan 2024, Accepted 17 Feb 2024, Published online: 28 Feb 2024

References

  • Ahmed, S. M. H. (2017). Impact of added graded levels of sugar cane molasses to drink water on performance of broiler chicks. Sudan University of Science & Technology.
  • Åkerberg, C., & Zacchi, G. (2000). An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresource Technology, 75(2), 119–11. https://doi.org/10.1016/S0960-8524(00)00057-2
  • Al Loman, A., & Ju, L.-K. (2016). Soybean carbohydrate as a fermentation feedstock for the production of biofuels and value-added chemicals. Process Biochemistry, 51(8), 1046–1057. https://doi.org/10.1016/j.procbio.2016.04.011
  • ARB. (2015). Air resources board final (issue June).
  • Asikin, Y., Takahashi, M., Mishima, T., Mizu, M., Takara, K., & Wada, K. (2013). Antioxidant activity of sugarcane molasses against 2, 2′-azobis (2-amidinopropane) dihydrochloride-induced peroxyl radicals. Food Chemistry, 141(1), 466–472. https://doi.org/10.1016/j.foodchem.2013.03.045
  • Atiyeh, H., & Duvnjak, Z. (2003). Production of fructose and ethanol from cane molasses using Saccharomyces cerevisiae ATCC 36858. Acta Biotechnologica, 23(1), 37–48. https://doi.org/10.1002/abio.200390005
  • Azizi-Shotorkhoft, A., Rezaei, J., & Fazaeli, H. (2013). The effect of different levels of molasses on the digestibility, rumen parameters, and blood metabolites in sheep-fed processed broiler litter. Animal Feed Science and Technology, 179(1–4), 69–76. https://doi.org/10.1016/j.anifeedsci.2012.12.001
  • Barbagallo, M., & Dominguez, L. J. (2007). Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome, and insulin resistance. Archives of Biochemistry and Biophysics, 458(1), 40–47. https://doi.org/10.1016/j.abb.2006.05.007
  • Basso, L. C., Basso, T. O., & Rocha, S. N. (2011). Ethanol production in Brazil: The industrial process and its impact on yeast fermentation. Biofuel Production-Recent Developments and Prospects, 1530(3), 85–100.
  • Bekatorou, A., Psarianos, C., & Koutinas, A. A. (2006). Production of food-grade yeasts. Food Technology and Biotechnology, 44(3), 407–415.
  • Bor-Sen, W., Chang, L.-W., Kang, Z.-C., Chu, H.-L., Tai, H.-M., & Huang, M.-H. (2011). Inhibitory effects of molasses on mutation and nitric oxide production. Food Chemistry, 126(3), 1102–1107. https://doi.org/10.1016/j.foodchem.2010.11.139
  • Bouallagui, H., Touhami, Y., Hanafi, N., Ghariani, A., & Hamdi, M. (2013). Performances comparison between three technologies for continuous ethanol production from molasses. Biomass and Bioenergy, 48, 25–32. https://doi.org/10.1016/j.biombioe.2012.10.018
  • Broderick, G. A., & Radloff, W. J. (2004). Effect of molasses supplementation on the production of lactating dairy cows fed diets based on alfalfa and corn silage. Journal of Dairy Science, 87(9), 2997–3009. https://doi.org/10.3168/jds.S0022-0302(04)73431-1
  • Celligoi, M. A. P. C., Silveira, V. A. I., Hipólito, A., Caretta, T. O., & Baldo, C. (2020). Sophorolipids: A review on production and perspectives of application in agriculture. Spanish Journal of Agricultural Research, 18(3), e0301–e0301. https://doi.org/10.5424/sjar/2020183-15225
  • Chajuss, D. (2004). Soy molasses: Processing and utilization as a functional food. Soybeans as Functional Foods and Ingredients, AOCS Press, Champaign. Ill., USA, 201–208.
  • Chang, J.-J., Wu, J.-H., Wen, F.-S., Hung, K.-Y., Chen, Y.-T., Hsiao, C.-L., Lin, C.-Y., & Huang, C.-C. (2008). Molecular monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention times. International Journal of Hydrogen Energy, 33(5), 1579–1585. https://doi.org/10.1016/j.ijhydene.2007.09.045
  • Chatterjee, R., Colangelo, L. A., Yeh, H. C., Anderson, C. A., Daviglus, M. L., Liu, K., & Brancati, F. L. (2012). Potassium intake and risk of incident type 2 diabetes mellitus: The coronary artery risk development in young adults (CARDIA) study. Diabetologia, 55(5), 1295–1303. https://doi.org/10.1007/s00125-012-2487-3
  • Chen, L.-X., He, H., & Qiu, F. (2011). Natural withanolides: An overview. Natural Product Reports, 28(4), 705–740. https://doi.org/10.1039/c0np00045k
  • Chen, P., Li, Y., Shen, Y., Cao, Y., Li, Q., Wang, M., Liu, M., Wang, Z., Huo, Z., Ren, S., Gao, Y., & Li, J. (2022). Effect of dietary rumen-degradable starch to rumen-degradable protein ratio on in vitro rumen fermentation characteristics and microbial protein synthesis. Animals, 12(19), 2633. https://doi.org/10.3390/ani12192633
  • Chotineeranat, S., Wansuksri, R., Piyachomkwan, K., Chatakanonda, P., Weerathaworn, P., & Sriroth, K. (2010). Effect of calcium ions on ethanol production from molasses by Saccharomyces cerevisiae. Sugar Technology, 12(2), 120–124. https://doi.org/10.1007/s12355-010-0024-6
  • Daverey, A., & Pakshirajan, K. (2009). Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Applied Biochemistry and Biotechnology, 158(3), 663–674. https://doi.org/10.1007/s12010-008-8449-z
  • de Oliveira, R. A., Komesu, A., Rossell, C. E. V., & Maciel Filho, R. (2018). Challenges and opportunities in lactic acid bioprocess design—from economic to production aspects. Biochemical Engineering Journal, 133, 219–239. https://doi.org/10.1016/j.bej.2018.03.003
  • Dumbrepatil, A., Adsul, M., Chaudhari, S., Khire, J., & Gokhale, D. (2008). Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Applied and Environmental Microbiology, 74(1), 333–335. https://doi.org/10.1128/AEM.01595-07
  • El Takriti, S., Searle, S., & Pavlenko, N. (2017). Indirect greenhouse gas emissions of molasses ethanol in the European Union. The International Council on Clean Transportation. https://theicct.org/sites/default/files/publications/EUmolassesethanolemissionsICCTzworkingpaper27092017%20vF.pdf
  • Filipčev, B., Bodroža-Solarov, M., Šimurina, O., & Cvetković, B. (2012). Use of sugar beet molasses in processing of gingerbread type biscuits: Effect on quality characteristics, nutritional profile, and bioavailability of calcium and iron. Acta Alimentaria, 41(4), 494–505. https://doi.org/10.1556/AAlim.41.2012.4.11
  • Filipčev, B., Lević, L., Bodroža-Solarov, M., Mišljenović, N., & Koprivica, G. (2010). Quality characteristics and antioxidant properties of breads supplemented with sugar beet molasses-based ingredients. International Journal of Food Properties, 13(5), 1035–1053. https://doi.org/10.1080/10942910902950526
  • Filipčev, B., Mišan, A., Šarić, B., & Šimurina, O. (2016). Sugar beet molasses as an ingredient to enhance the nutritional and functional properties of gluten-free cookies. International Journal of Food Sciences and Nutrition, 67(3), 249–256. https://doi.org/10.3109/09637486.2016.1157140
  • Filipović, V. S., Ćurčić, B. L., Nićetin, M. R., Plavšić, D. V., Koprivica, G. B., & Mišljenović, N. M. (2012). Mass transfer and microbiological profile of pork meat dehydrated in two different osmotic solutions. Hemijska Industrija, 66(5), 743–748. https://doi.org/10.2298/HEMIND120130033F
  • Gao, X., & Oba, M. (2016). Effect of increasing dietary non-fiber carbohydrate with starch, sucrose, or lactose on rumen fermentation and productivity of lactating dairy cows. Journal of Dairy Science, 99(1), 291–300. https://doi.org/10.3168/jds.2015-9871
  • Gasmalla, M. A. A., Yang, R., Nikoo, M., & Man, S. (2012). Production of ethanol from Sudanese sugar cane molasses and evaluation of its quality. Journal of Food Process Technology, 3(7), 163–165.
  • Gaspar, A. L. C., & de Góes-Favoni, S. P. (2015). Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chemistry, 171(2015), 315–322. https://doi.org/10.1016/j.foodchem.2014.09.019
  • Ghorbani, F., Younesi, H., Sari, A. E., & Najafpour, G. (2011). Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renewable Energy, 36(2), 503–509. https://doi.org/10.1016/j.renene.2010.07.016
  • Göksungur, Y., & Güvenç, U. (1999). Production of lactic acid from beet molasses by calcium alginate immobilized Lactobacillus delbrueckii IFO 3202. Journal of Chemical Technology & Biotechnology, 74(2), 131–136. https://doi.org/10.1002/(SICI)1097-4660(199902)74:2<131:AID-JCTB996>3.0.CO;2-Q
  • Göksungur, Y., & Zorlu, N. (2001). Production of ethanol from beet molasses by Ca-alginate immobilized yeast cells in a packed-bed bioreactor. Turkish Journal of Biology, 25(3), 265–275.
  • Gopal, A. R., & Kammen, D. M. (2009). Molasses for ethanol: The economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol. Environmental Research Letters, 4(4), 44005. https://doi.org/10.1088/1748-9326/4/4/044005
  • Gordana, B. K., Pezo, L. L., Ćurčić, B. L., Lević, L. B., & Šuput, D. Z. (2014). Optimization of osmotic dehydration of apples in sugar beet molasses. Journal of Food Processing and Preservation, 38(4), 1705–1715. https://doi.org/10.1111/jfpp.12133
  • Guan, Y., Tang, Q., Fu, X., Yu, S., Wu, S., & Chen, M. (2014). Preparation of antioxidants from sugarcane molasses. Food Chemistry, 152, 552–557. https://doi.org/10.1016/j.foodchem.2013.12.016
  • Guilmanov, V., Ballistreri, A., Impallomeni, G., & Gross, R. A. (2002). Oxygen transfer rate and sophorose lipid production by Candida bombicola. Biotechnology and Bioengineering, 77(5), 489–494. https://doi.org/10.1002/bit.10177
  • Guimaraes, C. M., GIao, M. S., Martinez, S. S., Pintado, A. I., Pintado, M. E., Bento, L. S., & Malcata, F. X. (2007). Antioxidant activity of sugar molasses, including protective effect against DNA oxidative damage. Journal of Food Science, 72(1), C039–C043. https://doi.org/10.1111/j.1750-3841.2006.00231.x
  • Gutiérrez-Rivera, B., Ortiz-Muñiz, B., Gómez-Rodríguez, J., Cárdenas-Cágal, A., González, J. M. D., & Aguilar-Uscanga, M. G. (2015). Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renewable Energy, 74, 399–405. https://doi.org/10.1016/j.renene.2014.08.030
  • Hackmann, T. J., & Firkins, J. L. (2015). Maximizing efficiency of rumen microbial protein production. Frontiers in Microbiology, 6, 465. https://doi.org/10.3389/fmicb.2015.00465
  • Hall, M. B. (2011). Isotrichid protozoa influence the conversion of glucose to glycogen and other microbial products. Journal of Dairy Science, 94(9), 4589–4602. https://doi.org/10.3168/jds.2010-3878
  • Hansen, A. C., Zhang, Q., & Lyne, P. W. L. (2005). Ethanol–diesel fuel blends––a review. Bioresource Technology, 96(3), 277–285. https://doi.org/10.1016/j.biortech.2004.04.007
  • Horie, T., Tsukayama, M., Yamada, T., Miura, I., & Nakayama, M. (1986). Three flavone glycosides from citrus sudachi. Phytochemistry, 25(11), 2621–2624. https://doi.org/10.1016/S0031-9422(00)84522-7
  • Jain, R., & Venkatasubramanian, P. (2017). Sugarcane molasses–a potential dietary supplement in the management of iron deficiency anemia. Journal of Dietary Supplements, 14(5), 589–598. https://doi.org/10.1080/19390211.2016.1269145
  • Jamir, L., Kumar, V., Kaur, J., Kumar, S., & Singh, H. (2021). Composition, valorization and therapeutical potential of molasses: A critical review. Environmental Technology Reviews, 10(1), 131–142. https://doi.org/10.1080/21622515.2021.1892203
  • Jiang, Z.-P., Li, Y.-R., Wei, G.-P., Liao, Q., Su, T.-M., Meng, Y.-C., Zhang, H.-Y., & Lu, C.-Y. (2012). Effect of long-term vinasse application on physico-chemical properties of sugarcane field soils. Sugar Technology, 14(4), 412–417. https://doi.org/10.1007/s12355-012-0174-9
  • Ji, J., Yang, X., Flavel, M., Shields, Z. P.-I., & Kitchen, B. (2019). Antioxidant and anti-diabetic functions of a polyphenol-rich sugarcane extract. Journal of the American College of Nutrition, 38(8), 670–680. https://doi.org/10.1080/07315724.2019.1587323
  • Kang, G.-H., Kang, B.-H., Park, K.-D., Chung, K.-Y., Sohn, B.-K., Ha, H.-S., Heo, J.-S., & Cho, J.-S. (2004). Effects of condensed molasses soluble on chemical and biological properties of soil, and nitrogen mineralization. Korean Journal of Soil Science and Fertilizer, 37(2), 124–130.
  • Khatiwada, D., Venkata, B. K., Silveira, S., & Johnson, F. X. (2016). Energy and GHG balances of ethanol production from cane molasses in Indonesia. Applied Energy, 164, 756–768. https://doi.org/10.1016/j.apenergy.2015.11.032
  • Kim, S., & Dale, B. E. (2002). Allocation procedure in ethanol production system from corn grain I. system expansion. The International Journal of Life Cycle Assessment, 7(4), 237–243. https://doi.org/10.1007/BF02978879
  • Kobayashi, Y., Suzuki, M., Satsu, H., Arai, S., Hara, Y., Suzuki, K., Miyamoto, Y., & Shimizu, M. (2000). Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. Journal of Agricultural and Food Chemistry, 48(11), 5618–5623. https://doi.org/10.1021/jf0006832
  • Koprivica, G. (2013). Nutritive profile and sensorial quality of osmotically dehydrated fruits and vegetables in sugar beet molasses and sucrose solutions.
  • Koprivica, G., Mišljenović, N., Lević, L., & Jevrić, L. (2010). Mass transfer kinetics during osmotic dehydration of plum in sugar beet molasses. Journal on Processing and Energy in Agriculture, 14(1), 27–31.
  • Kotzamanidis, C. H., Roukas, T., & Skaracis, G. (2002). Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World Journal of Microbiology and Biotechnology, 18(5), 441–448. https://doi.org/10.1023/A:1015523126741
  • Kuroyanagi, M., Ishii, H., Kawahara, N., Sugimoto, H., Yamada, H., Okihara, K., & Shirota, O. (2008). Flavonoid glycosides and limonoids from Citrus molasses. Journal of Natural Medicines, 62(1), 107–111. https://doi.org/10.1007/s11418-007-0198-8
  • Kwon, O., Eck, P., Chen, S., Corpe, C. P., Lee, J., Kruhlak, M., & Levine, M. (2007). Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. The FASEB Journal, 21(2), 366–377. https://doi.org/10.1096/fj.06-6620com
  • Lazarides, H. N. (2019). Reasons and possibilities to control solids uptake during osmotic treatment of fruits and vegetables. In CRC press (Ed.), Osmotic dehydration & vacuum impregnation (pp. 33–42). CRC Press.
  • Lea, A. G., & Piggott, J. R. (2012). Fermented beverage production. Springer Science & Business Media.
  • Liljeberg, H. G. M., Lönner, C. H., & Björck, I. M. E. (1995). Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. The Journal of Nutrition, 125(6), 1503–1511. https://doi.org/10.1093/jn/125.6.1503
  • Lin, C.-Y., Lin, C.-Y., Wu, J.-H., & Chen, C.-C. (2007). Effect of thermal pretreatment of influent on the fermentative hydrogen production from molasses. Journal of Environmental Engineering and Management, 17(2), 117.
  • Long, C. C., & Gibbons, W. R. (2013). Conversion of soy molasses, soy solubles, and dried soybean carbohydrates into ethanol. International Journal of Agricultural and Biological Engineering, 6(1), 62–68.
  • Macarulla, M. T., Martinez, J. A., Barcina, Y., & Larralde, J. (1989). Intestinal absorption of D-galactose in the presence of extracts from Phaseolus vulgaris hulls. Plant Foods for Human Nutrition, 39(4), 359–367. https://doi.org/10.1007/BF01092073
  • Mangwanda, T., Johnson, J. B., Mani, J. S., Jackson, S., Chandra, S., McKeown, T., White, S., & Naiker, M. (2021). Processes, challenges, and optimization of rum production from molasses—a contemporary review. Fermentation, 7(1), 21. https://doi.org/10.3390/fermentation7010021
  • Martel, C. A., Titgemeyer, E. C., Mamedova, L. K., & Bradford, B. J. (2011). Dietary molasses increases ruminal pH and enhances ruminal biohydrogenation during milk fat depression. Journal of Dairy Science, 94(8), 3995–4004. https://doi.org/10.3168/jds.2011-4178
  • Masgoret, M. S., Botha, C. J., Myburgh, J. G., Naudé, T. W., Prozesky, L., Naidoo, V., Van Wyk, J. H., Pool, E. J., & Swan, G. E. (2009). Molasses as a possible cause of an“endocrine disruptive syndrome” in calves. Onderstepoort Journal of Veterinary Research, 76(2), 209–225. https://doi.org/10.4102/ojvr.v76i2.46
  • Masgoret Cuellar, M. S. (2007). Molasses as a possible cause of“endocrine disruptive syndrome” in cattle. University of Pretoria.
  • Medeiros, A. B. P., de Matos, M. E., de Pinho Monteiro, A., de Carvalho, J. C., & Soccol, C. R. (2017). Cachaça and rum. In Current developments in biotechnology and bioengineering (pp. 451–468). Elsevier.
  • Mišljenović, N. M., Koprivica, G. B., Jevrić, L. R., & Lević, L. J. B. (2011). Mass transfer kinetics during osmotic dehydration of carrot cubes in sugar beet molasses. Romanian Biotechnological Letters, 16(6), 6790–6799.
  • Morais, P. B., Rosa, C. A., Linardi, V. R., Carazza, F., & Nonato, E. A. (2007). Production of fuel alcohol by saccharomyces strains from tropical habitats. Biotechnology Letters, 18(11), 1351–1356. https://doi.org/10.1007/BF00129969
  • Mordenti, A. L., Giaretta, E., Campidonico, L., Parazza, P., & Formigoni, A. (2021). A review regarding the use of molasses in animal nutrition. Animals, 11(1), 115. https://doi.org/10.3390/ani11010115
  • Mulye, S. (2019). The effect of distillation conditions and molasses concentration on the volatile compounds of unaged rum. Auckland University of Technology.
  • Ndegwa, J. K. (2011). The effect of cane molasses on the strength of expansive clay soil. Journal of Emerging Trends in Engineering and Applied Sciences, 2(6), 1034–1041.
  • Nevena, M., Koprivica, G., & Lević, L. (2010). Comparison of the kinetics of osmotic drying apples in sugar beet molasses and sucrose solutions. Journal on Processing and Energy in Agriculture, 14(1), 32–35.
  • Nevena, M., Koprivica, G. B., Lević, L. B., Filipčev, B. V., & Kuljanin, T. A. (2009). Osmotic dehydration of red cabbage in sugar beet molasses: Mass transfer kinetics. Acta Periodica Technologica, 40(40), 145–154. https://doi.org/10.2298/APT0940145M
  • Nogata, Y., Sakamoto, K., Shiratsuchi, H., Ishii, T., Yano, M., & Ohta, H. (2006). Flavonoid composition of fruit tissues of citrus species. Bioscience, Biotechnology, and Biochemistry, 70(1), 178–192. https://doi.org/10.1271/bbb.70.178
  • Noike, T., Takabatake, H., Mizuno, O., & Ohba, M. (2002). Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy, 27(11–12), 1367–1371. https://doi.org/10.1016/S0360-3199(02)00120-9
  • Noureldin, H. A., Salman, K. H., Ali, H. M., & Mansour, A. I. A. (2020). Using of sugarcane molasses on novel yoghurt making. Archives of Agriculture Sciences Journal, 3(2), 156–167. https://doi.org/10.21608/aasj.2020.37510.1027
  • OECD & FAO. (2016). Agriculture in sub-saharan Africa: Prospects and challenges for the next decade. OECD-FAO Agricultural Outlook, 2025(181), 1–39.
  • Oliveira, R. A. D., Maciel Filho, R., & Rossel, C. E. V. (2016). High lactic acid production from molasses and hydrolyzed sugarcane bagasse. Chemical Engineering Transactions, 50, 307–312.
  • Palmonari, A., Cavallini, D., Sniffen, C. J., Fernandes, L., Holder, P., Fagioli, L., Fusaro, I., Biagi, G., Formigoni, A., & Mammi, L. (2020). Short communication: Characterization of molasses chemical composition. Journal of Dairy Science, 103(7), 6244–6249. https://doi.org/10.3168/jds.2019-17644
  • Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology, 74(1), 25–33. https://doi.org/10.1016/S0960-8524(99)00161-3
  • Patidar, V., Dixit, S., Ghandour, M. M. A., Keshri, A., Singh, M., & Kundu, S. S. (2022). Carbohydrate and protein fractionations of commonly used forages and agro-industrial byproducts as per Cornell Net carbohydrate and protein system (CNCPS). Journal of Livestock Science, 13(3), 182–187. https://doi.org/10.33259/JLivestSci.2022.182-187
  • Phillips, K. M., Carlsen, M. H., & Blomhoff, R. (2009). Total antioxidant content of alternatives to refined sugar. Journal of the American Dietetic Association, 109(1), 64–71. https://doi.org/10.1016/j.jada.2008.10.014
  • Pikilidou, M. I., Lasaridis, A. N., Sarafidis, P. A., Befani, C. D., Koliakos, G. G., Tziolas, I. M., Kazakos, K. A., Yovos, J. G., & Nilsson, P. M. (2009). Insulin sensitivity increases after calcium supplementation and changes in intraplatelet calcium and sodium–hydrogen exchange in hypertensive patients with type 2 diabetes 1. Diabetic Medicine, 26(3), 211–219. https://doi.org/10.1111/j.1464-5491.2009.02673.x
  • Pyakurel, A., Dahal, B. R., & Rijal, S. (2019). Effect of molasses and organic fertilizer in soil fertility and yield of spinach in Khotang, Nepal. International Journal of Applied Sciences and Biotechnology, 7(1), 49–53. https://doi.org/10.3126/ijasbt.v7i1.23301
  • Rahiman, F., & Pool, E. J. (2016). The effect of sugar cane molasses on the immune and male reproductive systems using in vitro and in vivo methods. Iranian Journal of Basic Medical Sciences, 19(10), 1125.
  • Rakita, S., Banjac, V., Djuragic, O., Cheli, F., & Pinotti, L. (2021). Soybean molasses in animal nutrition. Animals, 11(2), 514. https://doi.org/10.3390/ani11020514
  • Rau, U., Hammen, S., Heckmann, R., Wray, V., & Lang, S. (2001). Sophorolipids: A source for novel compounds. Industrial Crops and Products, 13(2), 85–92. https://doi.org/10.1016/S0926-6690(00)00055-8
  • Rein, P. W. (2007). Developments in sugarcane processing over the last 25 years. Sugar Industry/zuckerindustrie, 132(6), 435–444.
  • RFA. (2009). Carbon and sustainability reporting within the renewable transport fuel obligation - technical guidance part one (issue January).
  • Rodríguez, A., Gea, T., & Font, X. (2021). Sophorolipids production from oil cake by solid-state fermentation. Inventory for economic and environmental assessment. Frontiers in Chemical Engineering, 3, 632752. https://doi.org/10.3389/fceng.2021.632752
  • Roukas, T. (1998). Pretreatment of beet molasses to increase pullulan production. Process Biochemistry, 33(8), 805–810. https://doi.org/10.1016/S0032-9592(98)00048-X
  • Samavat, S. (2014). The effects of fulvic acid and sugar cane molasses on yield and qualities of tomato. International Research Journal of Applied and Basic Sciences, 8(3), 266–268.
  • Šarić, L. Ć., Filipčev, B. V., Šimurina, O. D., Plavšić, D. V., Šarić, B. M., Lazarević, J. M., & Milovanović, I. L. (2016). Sugar beet molasses: Properties and applications in osmotic dehydration of fruits and vegetables. Food and Feed Research, 43(2), 135–144. https://doi.org/10.5937/FFR1602135S
  • Sarka, E., Bubnik, Z., Hinkova, A., Gebler, J., & Kadlec, P. (2012). Molasses as a by-product of sugar crystallization and a perspective raw material. Procedia Engineering, 42, 1219–1228. https://doi.org/10.1016/j.proeng.2012.07.514
  • Scalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287–306. https://doi.org/10.1080/1040869059096
  • Schenck, S. (2001). Molasses soil amendment for crop improvement and nematode management. Hawaii Agricultural Research Center, 3, 1–7.
  • Shapouri, H., Duffield, J., Mcaloon, A. J., & Wang, M. (2004, June 24–25). The 2001 net energy balance of corn-ethanol. Proceedings of the Conference on Agriculture as a Producer and Consumer of Energy, Arlington, VA. www.usda.gov/oce/reports/energy/net_energy_balance.pdf
  • Sherif, N. J. (2018). Characterization and optimization of lactic acid produced from sugar cane molasses by using lactobacillus plantarium bacteria isolated from “Kocho”. Addis Ababa University Addis Ababa.
  • Simurina, O., Filipcev, B., Levic, L., Pribis, V., & Pajin, B. (2006). Sugar beet molasses as an ingredient in tea-cookie formulations. PTEP (Serbia and Montenegro), 10(3–4), 93–96.
  • Singh, R., Yadav, M., Kumar, V., Sharma, I., Singh, M., & Upadhyay, S. K. (2021). Effect of molasses on the growth of okra, abelmoschus esculentus (L.) Moench (Dicotyledonae: Malvaceae). BioScience Research Bulletin-Biological Sciences, 37(1), 1–14. https://doi.org/10.5958/2320-3161.2021.00002.X
  • Solaiman, D. K. Y., Ashby, R. D., Zerkowski, J. A., & Foglia, T. A. (2007). Simplified soy molasses-based medium for reduced-cost production of sophorolipids by Candida bombicola. Biotechnology Letters, 29(9), 1341–1347. https://doi.org/10.1007/s10529-007-9407-5
  • Soltan, S. S. A. (2013). The protective effect of soybean, sesame, lentils, pumpkin seeds, and molasses on iron deficiency anemia in rats. World Applied Sciences Journal, 23(6), 795–807.
  • St-Pierre, P., Pilon, G., Dumais, V., Dion, C., Dubois, M.-J., Dubé, P., Desjardins, Y., & Marette, A. (2014). Comparative analysis of maple syrup to other natural sweeteners and evaluation of their metabolic responses in healthy rats. Journal of Functional Foods, 11, 460–471. https://doi.org/10.1016/j.jff.2014.10.001
  • Strop, P. (2014). Versatility of microbial transglutaminase. Bioconjugate Chemistry, 25(5), 855–862. https://doi.org/10.1021/bc500099v
  • Suganya, K., & Rajannan, G. (2009). Effect of onetime post-sown and pre-sown application of distillery spent wash on the growth and yield of maize crop. Botany Research International, 2(4), 288–294.
  • Tan, Q.-G., & Luo, X.-D. (2011). Meliaceous limonoids: chemistry and biological activities. Chemical Reviews, 111(11), 7437–7522. https://doi.org/10.1021/cr9004023
  • Tinashe, M., Mani, J. S., Johnson, J. B., Jackson, S., McKeown, T., & Naiker, M. (2023). Physicochemical and nutritional analysis of molasses for rum fermentation. Biology and Life Sciences Forum, 26(1), 105.
  • Tsiropoulos, I., Faaij, A. P. C., Seabra, J. E. A., Lundquist, L., Schenker, U., Briois, J.-F., & Patel, M. K. (2014). Life cycle assessment of sugarcane ethanol production in India in comparison to Brazil. The International Journal of Life Cycle Assessment, 19(5), 1049–1067. https://doi.org/10.1007/s11367-014-0714-5
  • Valli, V., Gómez-Caravaca, A. M., DiNunzio, M., Danesi, F., Caboni, M. F., & Bordoni, A. (2012). Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. Journal of Agricultural and Food Chemistry, 60(51), 12508–12515. https://doi.org/10.1021/jf304416d
  • Vallimont, J. E., Bargo, F., Cassidy, T. W., Luchini, N. D., Broderick, G. A., & Varga, G. A. (2004). Effects of replacing dietary starch with sucrose on ruminal fermentation and nitrogen metabolism in continuous culture. Journal of Dairy Science, 87(12), 4221–4229. https://doi.org/10.3168/jds.S0022-0302(04)73567-5
  • Wang, B. S., Chang, L. W., Kang, Z. C., Chu, H. L., Tai, H. M. & Huang, M. H. (2011). Inhibitory effects of molasses on mutation and nitric oxide production. Food Chemistry, 126(3), 1102–1107.
  • Wang, Y., Wei, M., Bi, L., Li, Y., Wang, W., & Ye, Y. (2006). Effect of irrigating vinasse waste liquor on the activity of three kinds of enzymes and agronomic characters at seedling stage in sugarcane. Southwest China Journal of Agricultural Sciences, 19(3), 482–485.
  • Wang, L., Zhao, B., Liu, B., Yu, B., Ma, C., Su, F. & Xu, P. (2010). Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 101(20), 7908–7915.
  • Wee, Y.-J., Kim, J.-N., Yun, J.-S., & Ryu, H.-W. (2004). Utilization of sugar molasses for economical L (+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme and Microbial Technology, 35(6–7), 568–573. https://doi.org/10.1016/j.enzmictec.2004.08.008
  • Whittaker, C., McManus, M. C. & Hammond, G. P. (2011). Greenhouse gas reporting for biofuels: A comparison between the RED, RTFO and PAS2050 methodologies. Energy Policy, 39(10), 5950–5960.
  • Wright, A. G., Ellis, T. P., & Ilag, L. L. (2014). Filtered molasses concentrate from sugar cane: Natural functional ingredient effective in lowering the glycaemic index and insulin response of high carbohydrate foods. Plant Foods for Human Nutrition, 69(4), 310–316. https://doi.org/10.1007/s11130-014-0446-5
  • Wu, J.-H., & Lin, C.-Y. (2004). Biohydrogen production by mesophilic fermentation of food wastewater. Water Science and Technology, 49(5–6), 223–228. https://doi.org/10.2166/wst.2004.0757
  • Wynne, A. T., & Meyer, J. H. (2002). An economic assessment of using molasses and condensed molasses solids as a fertilizer in the South African sugar industry. Proceedings South African Sugar Technologists Association, 76(200), 71–78.
  • Yadav, A. K., & Singh, S. V. (2014). Osmotic dehydration of fruits and vegetables: A review. Journal of Food Science and Technology, 51(9), 1654–1673. https://doi.org/10.1007/s13197-012-0659-2
  • Yeh, S., Sumner, D. A., Kaffka, S. R., Ogden, J. M., Jenkins, B. M., Lee, H., Parker, N. C., Tittmann, P. W., & Mishra, G. (2009). Developing a sustainability framework for the California low carbon fuel standard. Institute of Transportation Studies, University of California.
  • Yeh, S., & Witcover, J. (2016). Status review of California’s low carbon fuel standard, 2011–2015.
  • Yu, P., Xu, X.-B., & Yu, S.-J. (2017). Inhibitory effect of sugarcane molasses extracts on the formation of Nε-(carboxymethyl) lysine and Nε-(carboxyethyl) lysine. Food Chemistry, 221, 1145–1150. https://doi.org/10.1016/j.foodchem.2016.11.045
  • Zhang, L., Yan, C., Guo, Q., Zhang, J., & Ruiz-Menjivar, J. (2018). The impact of agricultural chemical inputs on environment: Global evidence from informetrics analysis and visualization. International Journal of Low-Carbon Technologies, 13(4), 338–352. https://doi.org/10.1093/ijlct/cty039
  • Zhong, Y., & Zhao, Y. (2015). Chemical composition and functional properties of three soy processing by-products (soy hull, okara, and molasses). Quality Assurance and Safety of Crops & Foods, 7(5), 651–660. https://doi.org/10.3920/QAS2014.0481