361
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation antibacterial application and mechanism of the cyclodextrin-metal-organic framework loaded with gold nanoparticle

, , &
Article: 2330670 | Received 08 Dec 2023, Accepted 08 Mar 2024, Published online: 05 Apr 2024

References

  • Atay, E., & Altan, A. (2023). Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Comprehensive Reviews in Food Science and Food Safety, 22(4), 3151–9. https://doi.org/10.1111/1541-4337.13179
  • Azi, F., Li, Z., Xu, P., & Dong, M. (2022). Transcriptomic analysis reveals the antibacterial mechanism of phenolic compounds from kefir fermented soy whey against Escherichia coli 0157: H7 and Listeria monocytogenes. International Journal of Food Microbiology, 383, 109953. https://doi.org/10.1016/j.ijfoodmicro.2022.109953
  • Borreby, C., Lillebæk, E. M. S., & Kallipolitis, B. H. (2023). Anti-infective activities of long-chain fatty acids against foodborne pathogens. FEMS Microbiology Reviews, 47(4). https://doi.org/10.1093/femsre/fuad037
  • Chen, J., Guo, T., Ren, X., Yang, T., Zhang, K., Guo, Y., Chen, X., Gui, S., Wang, S., Li, Q., Peng, C., Zhang, J., & Wu, L. (2022). Efficient capture and stabilization of iodine via gas-solid reaction using cyclodextrin metal-organic frameworks. Carbohydrate Polymers, 291, 119507. https://doi.org/10.1016/j.carbpol.2022.119507
  • Chen, P., Liu, Y., Li, C., Hua, S., Sun, C., & Huang, L. (2023). Antibacterial mechanism of vanillin against Escherichia coli O157: H7. Heliyon, 9(9), e19280. https://doi.org/10.1016/j.heliyon.2023.e19280
  • Doghish, A. S., Hashem, A. H., Shehabeldine, A. M., Sallam, A.-A. M., El-Sayyad, G. S., & Salem, S. S. (2022). Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: Synthesis, characterization, antimicrobial, and anticancer activities. Journal of Drug Delivery Science and Technology, 77, 103874. https://doi.org/10.1016/j.jddst.2022.103874
  • Fu, Y., Yang, L., Zhang, J., Hu, J., Duan, G., Liu, X., Li, Y., & Gu, Z. (2021). Polydopamine antibacterial materials. Materials Horizons, 8(6), 1618–1633. https://doi.org/10.1039/d0mh01985b
  • Gao, H., Sun, M., Duan, Y., Cai, Y., Dai, H., & Xu, T. (2023). Controllable synthesis of lignin nanoparticles with antibacterial activity and analysis of its antibacterial mechanism. International Journal of Biological Macromolecules, 246, 125596. https://doi.org/10.1016/j.ijbiomac.2023.125596
  • Ge, Y.-M., Xue, Y., Zhao, X.-F., Liu, J.-Z., Xing, W.-C., Hu, S.-W., & Gao, H.-M. (2024). Antibacterial and antioxidant activities of a novel biosynthesized selenium nanoparticles using Rosa roxburghii extract and chitosan: Preparation, characterization, properties, and mechanisms. International Journal of Biological Macromolecules, 254, 127971. https://doi.org/10.1016/j.ijbiomac.2023.127971
  • Han, D., Liu, X., & Wu, S. (2022). Metal organic framework-based antibacterial agents and their underlying mechanisms. Chemical Society Reviews, 51(16), 7138–7169. https://doi.org/10.1039/d2cs00460g
  • Hashem, A. H., Shehabeldine, A. M., Ali, O. M., & Salem, S. S. (2022). Synthesis of chitosan-based gold nanoparticles: Antimicrobial and wound-healing activities. Polymers, 14(11), 2293. https://doi.org/10.3390/polym14112293
  • He, K., Ding, Y. F., Zhao, Z., Liu, B., Nie, W., Luo, X., Yu, H. Z., Liu, J., & Wang, R. (2023). Cucurbit[7]uril‐mediated organ‐specific delivery of ultrasmall NIR‐II luminescent gold nanocarriers for therapy of acute kidney injury. Advanced Functional Materials, 34(6). https://doi.org/10.1002/adfm.202309949
  • Hu, W., Li, C., Dai, J., Cui, H., & Lin, L. (2019). Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Industrial Crops and Products, 130, 34–41. https://doi.org/10.1016/j.indcrop.2018.12.078
  • Khan, F., Park, S.-K., Bamunuarachchi, N. I., Oh, D., & Kim, Y.-M. (2021). Caffeine-loaded gold nanoparticles: Antibiofilm and anti-persister activities against pathogenic bacteria. Applied Microbiology and Biotechnology, 105(9), 3717–3731. https://doi.org/10.1007/s00253-021-11300-3
  • Kim, G., Xu, Y., Zhang, J., Sui, Z., & Corke, H. (2022). Antibacterial activity and multi-targeting mechanism of dehydrocorydaline from corydalis turtschaninovii Bess. Against Listeria monocytogenes. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.799094
  • Linklater, D. P., Baulin, V. A., Le Guével, X., Fleury, J. B., Hanssen, E., Nguyen, T. H. P., Juodkazis, S., Bryant, G., Crawford, R. J., Stoodley, P., & Ivanova, E. P. (2020). Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes. Advanced Materials, 32(52). https://doi.org/10.1002/adma.202005679
  • Osaili, T. M., Albiss, B. A., Alromi, R. F., Olaimat, A., Al-Holy, M., Savvaidis, I., & Holley, R. (2019). Effects of metal oxide nanoparticles with plant extract on viability of foodborne pathogens. Journal of Food Safety, 39(5), e12681. https://doi.org/10.1111/jfs.12681
  • Paesa, M., Almazán, F., Yus, C., Sebastián, V., Arruebo, M., Gandía, L. M., Reinoso, S., Pellejero, I., & Mendoza, G. (2023). Gold nanoparticles capped with a novel Titanium(IV)‐containing polyoxomolybdate cluster: Selective and enhanced bactericidal effect against Escherichia coli. Small, 20(6). https://doi.org/10.1002/smll.202305169
  • Paparella, A., & Maggio, F. (2023). Detection and control of foodborne pathogens. Foods, 12(19), 3521. https://doi.org/10.3390/foods12193521
  • Qiao, Z., Sun, H., Zhou, Q., Yi, L., Wang, X., Shan, Y., Yi, Y., Liu, B., Zhou, Y., & Lü, X. (2020). Characterization and antibacterial action mode of bacteriocin BMP32r and its application as antimicrobial agent for the therapy of multidrug-resistant bacterial infection. International Journal of Biological Macromolecules, 164, 845–854. https://doi.org/10.1016/j.ijbiomac.2020.07.192
  • Salem, S. S. (2022a). Baker’s yeast-mediated silver nanoparticles: Characterisation and antimicrobial biogenic tool for suppressing pathogenic microbes. BioNanoScience, 12(4), 1220–1229. https://doi.org/10.1007/s12668-022-01026-5
  • Salem, S. S. (2022b). Bio-fabrication of selenium nanoparticles using Baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Applied Biochemistry and Biotechnology, 194(5), 1898–1910. https://doi.org/10.1007/s12010-022-03809-8
  • Salem, S. S. (2023). A mini review on green nanotechnology and its development in biological effects. Archives of Microbiology, 205(4). https://doi.org/10.1007/s00203-023-03467-2
  • Salem, S. S., & Fouda, A. (2020). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3
  • Shah, S., Shah, S. A., Faisal, S., Khan, A., Ullah, R., Ali, N., & Bilal, M. (2021). Engineering novel gold nanoparticles using Sageretia thea leaf extract and evaluation of their biological activities. Journal of Nanostructure in Chemistry, 12(1), 129–140. https://doi.org/10.1007/s40097-021-00407-8
  • Shan, L., Qiao, Y., Ma, L., Zhang, X., Chen, C., Xu, X., Li, D., Qiu, S., Xue, X., Yu, Y., Guo, Y., Qian, K., & Wang, J. (2023). AuNPs/CNC nanocomposite with a “Dual dispersion” effect for LDI-TOF MS analysis of intact proteins in NSCLC serum exosomes. Advanced Science, 2307360. https://doi.org/10.1002/advs.202307360
  • Shen, M., Liao, X., Xianyu, Y., Liu, D., & Ding, T. (2022). Polydimethylsiloxane membranes incorporating metal–organic frameworks for the sustained release of antibacterial agents. Acs Applied Materials & Interfaces, 14(10), 12662–12673. https://doi.org/10.1021/acsami.1c24921
  • Smaldone, R. A., Forgan, R. S., Furukawa, H., Gassensmith, J. J., Slawin, A. M. Z., Yaghi, O. M., & Stoddart, J. F. (2010). Metal-organic frameworks from edible natural products. Angewandte Chemie International Edition, 49(46), 8630–8634. https://doi.org/10.1002/anie.201002343
  • Soliman, M. K. Y., Salem, S. S., Abu-Elghait, M., & Azab, M. S. (2022). Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Applied Biochemistry and Biotechnology, 195(2), 1158–1183. https://doi.org/10.1007/s12010-022-04199-7
  • Tang, H., Chen, W., Dou, Z.-M., Chen, R., Hu, Y., Chen, W., & Chen, H. (2017). Antimicrobial effect of black pepper petroleum ether extract for the morphology of Listeria monocytogenes and salmonella typhimurium. Journal of Food Science and Technology, 54(7), 2067–2076. https://doi.org/10.1007/s13197-017-2644-2
  • Wang, S., Wang, Y., Peng, Y., & Yang, X. (2019). Exploring the antibacteria performance of multicolor Ag, Au, and Cu nanoclusters. ACS Applied Materials & Interfaces, 11(8), 8461–8469. https://doi.org/10.1021/acsami.8b22143
  • Wei, F., Cui, X., Wang, Z., Dong, C., Li, J., & Han, X. (2021). Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chemical Engineering Journal, 408, 408. https://doi.org/10.1016/j.cej.2020.127240
  • Wei, H., Yang, C., Bi, F., Li, B., Xie, R., Yu, D., Fang, S., Hua, Z., Wang, Q., & Yang, G. (2024). Structure-controllable and mass-produced glycopolymersomes as a template of the carbohydrate@Ag nanobiohybrid with inherent antibacteria and biofilm eradication. Biomacromolecules, 25(1), 315–327. https://doi.org/10.1021/acs.biomac.3c01003
  • Wei, Y., Han, S., Walker, D. A., Fuller, P. E., & Grzybowski, B. A. (2012). Nanoparticle core/shell architectures within MOF crystals synthesized by reaction diffusion. Angewandte Chemie International Edition, 51(30), 7435–7439. https://doi.org/10.1002/anie.201202549
  • Zhang, B., Chen, H., Hu, Q., Jiang, L., Shen, Y., Zhao, D., & Zhou, Z. (2021). CelluMOFs: Green, facile, and flexible metal‐organic frameworks for versatile applications. Advanced Functional Materials, 31(43). https://doi.org/10.1002/adfm.202105395
  • Zhang, B., Zang, Y., Mo, Q., Sun, L., Tu, M., Shu, D., Li, Y., Xue, F., Wu, G., & Zhao, X. (2023). Antibacterial activity and mechanism of slightly acidic electrolyzed water (SAEW) combined with ultraviolet light against Staphylococcus aureus. Lwt, 182, 114746. https://doi.org/10.1016/j.lwt.2023.114746
  • Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282–289. https://doi.org/10.1016/j.foodcont.2015.05.032
  • Zhao, R.-N., Zhu, B.-W., Xu, Y., Yu, S.-F., Wang, W.-J., Liu, D.-H., & Hu, J.-N. (2023). Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems. Carbohydrate Polymers, 319, 319. https://doi.org/10.1016/j.carbpol.2023.121198
  • Zhao, X., Chen, L., Wu, J. E., He, Y., & Yang, H. (2020). Elucidating antimicrobial mechanism of nisin and grape seed extract against Listeria monocytogenes in broth and on shrimp through NMR-based metabolomics approach. International Journal of Food Microbiology, 319, 108494. https://doi.org/10.1016/j.ijfoodmicro.2019.108494
  • Zhao, X., Zheng, M., Gao, X., Zhang, J., Wang, E., & Gao, Z. (2021). The application of MOFs-based materials for antibacterials adsorption. Coordination Chemistry Reviews, 440, 440. https://doi.org/10.1016/j.ccr.2021.213970
  • Zhu, A., Ali, S., Jiao, T., Wang, Z., Ouyang, Q., & Chen, Q. (2023). Advances in surface‐enhanced raman spectroscopy technology for detection of foodborne pathogens. Comprehensive Reviews in Food Science and Food Safety, 22(3), 1466–1494. https://doi.org/10.1111/1541-4337.13118
  • Zhu, Y., Xu, H., Cui, D., Zhou, R., Wang, Y., Soni, A., Brightwell, G., Zhuang, J., Ma, R., & Jiao, Z. (2023). A novel antibacterial mechanism of atmospheric cold plasma against staphylococcus aureus through degradation of cellular staphyloxanthin. Innovative Food Science & Emerging Technologies, 90, 103496. https://doi.org/10.1016/j.ifset.2023.103496