343
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Progress in combating antibiotic resistance in animal agriculture

, , , , , , & show all
Article: 2330674 | Received 20 Dec 2023, Accepted 08 Mar 2024, Published online: 10 Apr 2024

References

  • Atterbury, R. J., Connerton, P. L., Dodd, C. E., Rees, C. E. D., & Connerton, I. F. (2003). Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Applied and Environmental Microbiology, 69(10), 6302–12. https://doi.org/10.1128/AEM.69.10.6302-6306.2003
  • Bennett, J. W., & Chung, K. T. (2001). Alexander fleming and the discovery of penicillin. Advances in Applied Microbiology, 49, 163–184. https://doi.org/10.1016/s0065-2164(01)49013-7
  • Block, S. S. (1977). Disinfection, sterilization, and preservation. Soil Science, 124(6), 378. https://doi.org/10.1097/00010694-197712000-00013
  • Brooks, J. P., Adeli, A., & McLaughlin, M. R. (2014). Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Research, 57, 96–103. https://doi.org/10.1016/j.watres.2014.03.017
  • Campo, N., De Flora, C., Maffettone, R., Manoli, K., Sarathy, S., Santoro, D., Gonzalez-Olmos, R., & Auset, M. (2020). Inactivation kinetics of antibiotic resistant Escherichia coli in secondary wastewater effluents by peracetic and performic acids. Water Research, 169, 115227. https://doi.org/10.1016/j.watres.2019.115227
  • Cerveny, K. E., DePaola, A., Duckworth, D. H., & Gulig, P. A. (2002). Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infection and Immunity, 70(11), 6251–6262. https://doi.org/10.1128/IAI.70.11.6251-6262.2002
  • Chaitiemwong, N., Hazeleger, W. C., & Beumer, R. R. (2014). Inactivation of Listeria monocytogenes by disinfectants and bacteriophages in suspension and stainless steel carrier tests. Journal of Food Protection, 77(12), 2012–2020. https://doi.org/10.4315/0362-028X.JFP-14-151
  • Chee‐Sanford, J. C., Mackie, R. I., Koike, S., Krapac, I. G., Lin, Y.-F., Yannarell, A. C., Maxwell, S., & Aminov, R. I. (2009). Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality, 38(3), 1086–1108. https://doi.org/10.2134/jeq2008.0128
  • Chen, J., Ren, Y., Seow, J., Liu, T., Bang, W., & Yuk, H. (2012). Intervention technologies for ensuring microbiological safety of meat: Current and future trends. Comprehensive Reviews in Food Science and Food Safety, 11(2), 119–132. https://doi.org/10.1111/j.1541-4337.2011.00177.x
  • Chen, J., Wei, X. D., Liu, Y. S., Ying, G.-G., Liu, S.-S., He, L.-Y., Su, H.-C., Hu, L.-X., Chen, F.-R., & Yang, Y.-Q. (2016). Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading. Science of the Total Environment, 565, 240–248. https://doi.org/10.1016/j.scitotenv.2016.04.176
  • Chen, T., Zhang, S., Zhu, R., Zhao, M., Zhang, Y., Wang, Y., Liao, X., Wu, Y., & Mi, J. (2022). Distribution and driving factors of antibiotic resistance genes in treated wastewater from different types of livestock farms. Science of the Total Environment, 849, 157837. https://doi.org/10.1016/j.scitotenv.2022.157837
  • Dai, J., Bai, M., Li, C., Cui, H., & Lin, L. (2020). Advances in the mechanism of different antibacterial strategies based on ultrasound technique for controlling bacterial contamination in food industry. Trends in Food Science & Technology, 105, 211–222. https://doi.org/10.1016/j.tifs.2020.09.016
  • Daş, E., Gürakan, G. C., & Bayındırlı, A. (2006). Effect of controlled atmosphere storage, modified atmosphere packaging and gaseous ozone treatment on the survival of Salmonella enteritidis on cherry tomatoes. Food Microbiology, 23(5), 430–438. https://doi.org/10.1016/j.fm.2005.08.002
  • Epelle, E. I., Macfarlane, A., Cusack, M., Burns, A., Amaeze, N., Mackay, W., & Yaseen, M. (2022). The impact of gaseous ozone penetration on the disinfection efficiency of textile materials. Ozone: Science & Engineering, 45(3), 1–15. https://doi.org/10.1080/01919512.2022.2066503
  • Fang, H., Wang, H., Cai, L., & Yu, Y. (2015). Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Environmental Science & Technology, 49(2), 1095–1104. https://doi.org/10.1021/es504157v
  • GulíGulíAs, Ò., McKenzie, G., Bayó, M., Agut, M., & Nonell, S. (2020). Effective photodynamic inactivation of 26 Escherichia coli strains with different antibiotic susceptibility profiles: A planktonic and biofilm study. Antibiotics, 9(3), 98. https://doi.org/10.3390/antibiotics9030098
  • Guo, A., Gu, J., Wang, X., Zhang, R., Yin, Y., Sun, W., Tuo, X., & Zhang, L. (2017). Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting. Bioresource Technology, 244, 658–663. https://doi.org/10.1016/j.biortech.2017.08.016
  • Hoon Park, J., Kumar, N., Hoon Park, D., Yusupov, M., Neyts, E. C., Verlackt, C. C. W., Bogaerts, A., Ho Kang, M., Sup Uhm, H., Ha Choi, E., & Attri, P. (2015). A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Scientific Reports, 5(1), 13849. https://doi.org/10.1038/srep13849
  • Huang, X., Liu, C., Li, K., Su, J., Zhu, G., & Liu, L. (2015). Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes. Water Research, 70, 109–117. https://doi.org/10.1016/j.watres.2014.11.048
  • Huang, X., Zheng, J., Liu, C., Liu, L., Liu, Y., & Fan, H. (2017). Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: Effect of hydraulic flow direction and substrate type. Chemical Engineering Journal, 308, 692–699. https://doi.org/10.1016/j.cej.2016.09.110
  • Kim, T. K., Kim, T., Park, H., Lee, I., Jo, A., Choi, K., & Zoh, K.-D. (2020). Degradation of ciprofloxacin and inactivation of ciprofloxacin resistant E. faecium during UV-LED (275 nm)/chlorine process. Chemical Engineering Journal, 394, 124803. https://doi.org/10.1016/j.cej.2020.124803
  • Lee, H., Lee, E., Lee, C. H., & Lee, K. (2011). Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation. Journal of Industrial and Engineering Chemistry, 17(3), 468–473. https://doi.org/10.1016/j.jiec.2011.05.006
  • Liao, X., Liu, D., Chen, S., Ye, X., & Ding, T. (2021). Degradation of antibiotic resistance contaminants in wastewater by atmospheric cold plasma: Kinetics and mechanisms. Environmental Technology, 42(1), 58–71. https://doi.org/10.1080/09593330.2019.1620866
  • Li, H., Song, R., Wang, Y., Zhong, R., Zhang, Y., Zhou, J., Wang, T., Jia, H., & Zhu, L. (2021a). Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma. Water Research, 204, 117630. https://doi.org/10.1016/j.watres.2021.117630
  • Li, H., Song, R., Wang, Y., Zhong, R., Zhang, Y., Zhou, J., Wang, T., & Zhu, L. (2021b). Simultaneous removal of antibiotic-resistant bacteria and its resistance genes in water by plasma oxidation: Highlights the effects of inorganic ions. Separation and Purification Technology, 278, 119672. https://doi.org/10.1016/j.seppur.2021.119672
  • Liu, X., & Hu, J. Y. (2020). Effect of DNA sizes and reactive oxygen species on degradation of sulphonamide resistance sul1 genes by combined UV/free chlorine processes. Journal of Hazardous Materials, 392, 122283. https://doi.org/10.1016/j.jhazmat.2020.122283
  • Macauley, J. J., Qiang, Z., Adams, C. D., Surampalli, R., & Mormile, M. R. (2006). Disinfection of swine wastewater using chlorine, ultraviolet light and ozone. Water Research, 40(10), 2017–2026. https://doi.org/10.1016/j.watres.2006.03.021
  • Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 10(10), 1310. https://doi.org/10.3390/pathogens10101310
  • Michael-Kordatou, I., Andreou, R., Iacovou, M., Frontistis, Z., Hapeshi, E., Michael, C., & Fatta-Kassinos, D. (2017). On the capacity of ozonation to remove antimicrobial compounds, resistant bacteria and toxicity from urban wastewater effluents. Journal of Hazardous Materials, 323, 414–425. https://doi.org/10.1016/j.jhazmat.2016.02.023
  • Miklasińska-Majdanik, M., Kępa, M., Wojtyczka, R. D., Idzik, D., & Wąsik, T. (2018). Phenolic compounds diminish antibiotic resistance of staphylococcus aureus clinical strains. International Journal of Environmental Research and Public Health, 15(10), 2321. https://doi.org/10.3390/ijerph15102321
  • Miller, R. W., Skinner, J., Sulakvelidze, A., Mathis, G. F., & Hofacre, C. L. (2010). Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Diseases, 54(1), 33–40. https://doi.org/10.1637/8953-060509-Reg.1
  • Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., …, Dolecek, C. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • Ni, L., Zheng, W., Zhang, Q., Cao, W., & Li, B. (2016). Application of slightly acidic electrolyzed water for decontamination of stainless steel surfaces in animal transport vehicles. Preventive Veterinary Medicine, 133, 42–51. https://doi.org/10.1016/j.prevetmed.2016.09.010
  • Noyes, N. R., Yang, X., Linke, L. M., Magnuson, R. J., Cook, S. R., Zaheer, R., Yang, H., Woerner, D. R., Geornaras, I., McArt, J. A., Gow, S. P., Ruiz, J., Jones, K. L., Boucher, C. A., McAllister, T. A., Belk, K. E., & Morley, P. S. (2016). Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. Scientific Reports, 6(1), 1–12. https://doi.org/10.1038/srep24645
  • Oh, J., Salcedo, D. E., Medriano, C. A., & Kim, S. (2014). Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. Journal of Environmental Sciences, 26(6), 1238–1242. https://doi.org/10.1016/S1001-0742(13)60594-X
  • Örmälä, A. M., & Jalasvuori, M. (2013). Phage therapy: Should bacterial resistance to phages be a concern, even in the long run? Bacteriophage, 3(1), e24219. https://doi.org/10.4161/bact.24219
  • Pandian, A. M. K., Rajamehala, M., Singh, M. V. P., Sarojini, G., & Rajamohan, N. (2022). Potential risks and approaches to reduce the toxicity of disinfection by-product–A review. Science of the Total Environment, 822, 153323. https://doi.org/10.1016/j.scitotenv.2022.153323
  • Patil, A., Banerji, R., Kanojiya, P., & Saroj, S. D. (2021). Foodborne ESKAPE biofilms and antimicrobial resistance: Lessons learned from clinical isolates. Pathogens and Global Health, 115(6), 339–356. https://doi.org/10.1080/20477724.2021.1916158
  • Peng, S., Li, H., Song, D., Lin, X., & Wang, Y. (2018). Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting. Bioresource Technology, 263, 393–401. https://doi.org/10.1016/j.biortech.2018.04.107
  • Petsong, K., Uddin, M. J., Vongkamjan, K., & Ahn, J. (2018). Combined effect of bacteriophage and antibiotic on the inhibition of the development of antibiotic resistance in Salmonella typhimurium. Food Science and Biotechnology, 27(4), 1239–1244. https://doi.org/10.1007/s10068-018-0351-z
  • Rebecca Annisha, O. D., Li, Z., Zhou, X., Madgil Don Stenay, N., & Donde, O. O. (2020). Performance evaluation of combined ultraviolet-ultrasonic technologies in removal of sulfonamide and tetracycline resistant Escherichia coli from domestic effluents. Journal of Water, Sanitation and Hygiene for Development, 10(2), 276–285. https://doi.org/10.2166/washdev.2020.144
  • Restaino, L., Frampton, E. W., Hemphill, J. B., & Palnikar, P. (1995). Efficacy of ozonated water against various food-related microorganisms. Applied and Environmental Microbiology, 61(9), 3471–3475. https://doi.org/10.1128/aem.61.9.3471-3475.1995
  • Rotman, S. G., Sumrall, E., Ziadlou, R., Grijpma, D. W., Richards, R. G., Eglin, D., & Moriarty, T. F. (2020). Local bacteriophage delivery for treatment and prevention of bacterial infections. Frontiers in Microbiology, 11, 538060. https://doi.org/10.3389/fmicb.2020.538060
  • Sarker, M. A. R., & Ahn, Y. H. (2022). Photodynamic inactivation of multidrug-resistant bacteria in wastewater effluent using green phytochemicals as a natural photosensitizer. Environmental Pollution, 311, 120015. https://doi.org/10.1016/j.envpol.2022.120015
  • Sengun, I. Y., Senturk, S., Gul, S., & Kilic, G. (2021). Potential of essential oil combinations for surface and air disinfection. Letters in Applied Microbiology, 72(5), 526–534. https://doi.org/10.1111/lam.13445
  • Serna-Galvis, E. A., Salazar-Ospina, L., Jiménez, J. N., Pino, N. J., & Torres-Palma, R. A. (2020). Elimination of carbapenem resistant Klebsiella pneumoniae in water by UV-C, UV-C/persulfate and UV-C/H2O2. Evaluation of response to antibiotic, residual effect of the processes and removal of resistance gene. Journal of Environmental Chemical Engineering, 8(1), 102196. https://doi.org/10.1016/j.jece.2018.02.004
  • Shao, Y., Wang, Y., Yuan, Y., & Xie, Y. (2021). A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Science of the Total Environment, 798, 149205. https://doi.org/10.1016/j.scitotenv.2021.149205
  • Sheng, L., Li, X., & Wang, L. (2022). Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends in Food Science & Technology, 124, 167–181. https://doi.org/10.1016/j.tifs.2022.04.001
  • Shin, M., Kang, J. W., & Kang, D. H. (2023). A study on antibiotic resistance gene degradation in fresh produce using peracetic acid combined with an ultraviolet-C light-emitting-diode. Food Control, 145, 109478. https://doi.org/10.1016/j.foodcont.2022.109478
  • Shiroodi, S., Schwarz, H. M., Nitin, N., & Ovissipour, R. (2021). Efficacy of Nanobubbles Alone or in combination with neutral electrolyzed water in removing Escherichia coli O157:H7, Vibrio parahaemolyticus, and listeria innocua biofilms. Food and Bioprocess Technology, 14(2), 1–11. https://doi.org/10.1007/s11947-020-02572-0
  • Song, X., Su, R., Wang, Y., Zhang, Y., Gao, B., Wang, Y., Ma, D., & Li, Q. (2023). Visible light-driven chlorite activation process for enhanced sulfamethoxazole antibiotics degradation, antimicrobial resistance reduction and biotoxicity elimination. Chemical Engineering Journal, 452, 139103. https://doi.org/10.1016/j.cej.2022.139103
  • Stange, C., Sidhu, J. P. S., Toze, Toze, S., & Tiehm, A. (2019). Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment. International Journal of Hygiene & Environmental Health, 222(3), 541–548. https://doi.org/10.1016/j.ijheh.2019.02.002
  • Sun, W., Gu, J., Wang, X., Qian, X., & Peng, H. (2019). Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure. Bioresource Technology, 274, 287–295. https://doi.org/10.1016/j.biortech.2018.09.013
  • Sun, W., Qian, X., Gu, J., Wang, X.-J., & Duan, M.-L. (2016). Mechanism and effect of temperature on variations in antibiotic resistance genes during anaerobic digestion of dairy manure. Scientific Reports, 6(1), 30237. https://doi.org/10.1038/srep30237
  • Svircev, A., Roach, D., & Castle, A. (2018). Framing the future with bacteriophages in agriculture. Viruses, 10(5), 218. https://doi.org/10.3390/v10050218
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., … Yilmaz, F. O. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
  • Tan, L., Zhao, Y., Li, Y., Peng, Z., He, T., Liu, Y., Zeng, Q., & Wang, J. J. (2022). Potent eradication of mixed-species biofilms using photodynamic inactivation coupled with slightly alkaline electrolyzed water. LWT, 155, 112958. https://doi.org/10.1016/j.lwt.2021.112958
  • Turtoi, M., & Borda, D. (2014). Decontamination of egg shells using ultraviolet light treatment. World’s Poultry Science Journal, 70(2), 265–278. https://doi.org/10.1017/S0043933914000282
  • Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., & Venkitanarayanan, K. (2013). Antibiofilm effect of plant derived antimicrobials on listeria monocytogenes. Food Microbiology, 36(1), 79–89. https://doi.org/10.1016/j.fm.2013.04.010
  • Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112
  • Van Boeckel, T. P., Glennon, E. E., Chen, D., Gilbert, M., Robinson, T. P., Grenfell, B. T., Levin, S. A., Bonhoeffer, S., & Laxminarayan, R. (2017). Reducing antimicrobial use in food animals consider user fees and regulatory caps on veterinary use. Science, 357(6358), 1350–1352. https://doi.org/10.1126/science.aao1495
  • Viswanathan, V. K. (2014). Off-label abuse of antibiotics by bacteria. Gut microbes, 5(1), 3–4. https://doi.org/10.4161/gmic.28027
  • Wei, Z., Decheng, S., Xia, F., Xiao, Z., Zhang, H., Zhou, Z., Huo, X., & Chong, Y. (2022). Occurrence and risk assessment of five kinds of antimicrobial in mattress on swine farm use ectopic fermentation systems in Zhejiang Province. Environmental Science and Pollution Research International, 29(46), 70591–70607. https://doi.org/10.1007/S11356-022-22891-3
  • Wells, J. B., Coufal, C. D., Parker, H. M., & McDaniel, C. D. (2010). Disinfection of eggshells using ultraviolet light and hydrogen peroxide independently and in combination. Poultry Science, 89(11), 2499–2505. https://doi.org/10.3382/ps.2009-00604
  • Wu, M. S., & Xu, X. (2019). Inactivation of antibiotic-resistant bacteria by chlorine dioxide in soil and shifts in community composition. RSC Advances, 9(12), 6526–6532. https://doi.org/10.1039/c8ra07997h
  • Yang, Y., Wan, K., Yang, Z., Li, D., Li, G., Zhang, S., Wang, L., & Yu, X. (2020). Inactivation of antibiotic resistant Escherichia coli and degradation of its resistance genes by glow discharge plasma in an aqueous solution. Chemosphere, 252, 126476. https://doi.org/10.1016/j.chemosphere.2020.126476
  • Yuan, Q. B., Guo, M. T., Yang, J., & Zhou, Z. (2015). Fate of antibiotic resistant bacteria and genes during wastewater chlorination: Implication for antibiotic resistance control. PLoS One, 10(3), e0119403. https://doi.org/10.1371/journal.pone.0119403
  • Yuan, Y., Wang, L., Li, X., Tan, D., Cong, C., & Xu, Y. (2019). Efficacy of a phage cocktail in controlling phage resistance development in multidrug resistant Acinetobacter baumannii. Virus Research, 272, 197734. https://doi.org/10.1016/j.virusres.2019.197734
  • Zalewska, M., Błażejewska, A., Czapko, A., & Popowska, M. (2021). Antibiotics and antibiotic resistance genes in animal manure – consequences of its application in agriculture. Frontiers in Microbiology, 12, 610656. https://doi.org/10.3389/fmicb.2021.610656
  • Zhang, Y., Snow, D. D., Parker, D., Zhou, Z., & Li, X. (2013). Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures. Environmental Science & Technology, 47(18), 10206–10213. https://doi.org/10.1021/es401964s