223
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Oleanolic acid inhibits cholesterol synthesis by suppressing the expression and enzymatic activity of HMGCR

, , , , , , & show all
Article: 2346341 | Received 02 Jan 2024, Accepted 17 Apr 2024, Published online: 11 May 2024

References

  • Attardo, S., Musumeci, O., Velardo, D., & Toscano, A. (2022). Statins neuromuscular adverse effects. International Journal of Molecular Sciences, 23(15), 8364. https://doi.org/10.3390/ijms23158364
  • Averbukh, L. D., Turshudzhyan, A., Wu, D. C., & Wu, G. Y. (2022). Statin-induced liver injury patterns: A clinical review. Journal of Clinical and Translational Hepatology, 10(3), 543–10. https://doi.org/10.14218/JCTH.2021.00271
  • Buus, N. H., Hansson, N. C., Rodriguez-Rodriguez, R., Stankevicius, E., Andersen, M. R., & Simonsen, U. (2011). Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice. European Journal of Pharmacology, 670(2–3), 519–526. https://doi.org/10.1016/j.ejphar.2011.09.037
  • Castellano, J. M., Ramos-Romero, S., & Perona, J. S. (2022). Oleanolic acid: Extraction, characterization and biological activity. Nutrients, 14(3), 623. https://doi.org/10.3390/nu14030623
  • Chakraborty, S., Doktorova, M., Molugu, T. R., Heberle, F. A., Scott, H. L., Dzikovski, B., Nagao, M., Stingaciu, L.-R., Standaert, R. F., Barrera, F. N., Katsaras, J., Khelashvili, G., Brown, M. F., & Ashkar, R. (2020). How cholesterol stiffens unsaturated lipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 117(36), 21896–21905. https://doi.org/10.1073/pnas.2004807117
  • Djeziri, F. Z., Belarbi, M., Murtaza, B., Hichami, A., Benammar, C., & Khan, N. A. (2018). Oleanolic acid improves diet-induced obesity by modulating fat preference and inflammation in mice. Biochimie, 152, 110–120. https://doi.org/10.1016/j.biochi.2018.06.025
  • Dobrzynski, J. M., & Kostis, J. B. (2015). Statins and Cataracts–a visual insight. Current Atherosclerosis Reports, 17(2), 477. https://doi.org/10.1007/s11883-014-0477-2
  • Feng, X., Zhang, L., Xu, S., & Shen, A.-Z. (2020). ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: An updated review. Progress in Lipid Research, 77, 101006. https://doi.org/10.1016/j.plipres.2019.101006
  • Galicia-Garcia, U., Jebari, S., Larrea-Sebal, A., Uribe, K. B., Siddiqi, H., Ostolaza, H., Benito-Vicente, A., & Martín, C. (2020). Statin treatment-induced development of type 2 diabetes: From clinical evidence to mechanistic insights. International Journal of Molecular Sciences, 21(13), 4725. https://doi.org/10.3390/ijms21134725
  • Gao, C. X., Tang, C. H., Wu, T. J., Hu, Y., Peng, Y.-L., Liu, M.-L., Liu, Q.-W., Chen, H.-F., Yang, Z.-H., & Zheng, X. (2023). Anticancer activity of oleanolic acid and its derivatives modified at A-ring and C-28 position. Journal of Asian Natural Products Research, 25(6), 581–594. https://doi.org/10.1080/10286020.2022.2120863
  • Giordano Attianese, G. M., & Desvergne, B. (2015). Integrative and systemic approaches for evaluating PPARβ/δ (PPARD) function. Nuclear receptor signaling, 13(1), e001. https://doi.org/10.1621/nrs.13001
  • Istvan, E. S., & Deisenhofer, J. (2001). Structural mechanism for statin inhibition of HMG-CoA reductase. Science (New York, NY), 292(5519), 1160–1164. https://doi.org/10.1126/science.1059344
  • Kandutsch, A. A., & Russell, A. E. (1960). Preputial gland tumor sterols. 3. A metabolic pathway from lanosterol to cholesterol. The Journal of Biological Chemistry, 235(8), 2256–2261. https://doi.org/10.1016/S0021-9258(18)64608-3
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Liscum, L., & Munn, N. J. (1999). Intracellular cholesterol transport. Biochimica Et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1438(1), 19–37. https://doi.org/10.1016/S1388-1981(99)00043-8
  • Liu, J., Liu, J., Meng, C., Huang, C., Liu, F., & Xia, C. (2022). Oleanolic acid alleviates ANIT-induced cholestatic liver injury by activating fxr and Nrf2 pathways to ameliorate disordered bile acids homeostasis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 102, 154173. https://doi.org/10.1016/j.phymed.2022.154173
  • Liu, J., Zheng, L., Wu, N., Ma, L., Zhong, J., Liu, G., & Lin, X. (2014). Oleanolic acid induces metabolic adaptation in cancer cells by activating the AMP-activated protein kinase pathway. Journal of Agricultural and Food Chemistry, 62(24), 5528–5537. https://doi.org/10.1021/jf500622p
  • Luo, J., Yang, H., & Song, B. L. (2020). Mechanisms and regulation of cholesterol homeostasis. Nature reviews Molecular cell biology, 21(4), 225–245. https://doi.org/10.1038/s41580-019-0190-7
  • Lu, X. Y., Shi, X. J., Hu, A., Wang, J.-Q., Ding, Y., Jiang, W., Sun, M., Zhao, X., Luo, J., Qi, W., & Song, B.-L. (2020). Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis. Nature, 588(7838), 479–484. https://doi.org/10.1038/s41586-020-2928-y
  • Luu, W., Hart-Smith, G., Sharpe, L. J., & Brown, A. J. (2015). The terminal enzymes of cholesterol synthesis, DHCR24 and DHCR7, interact physically and functionally. Journal of Lipid Research, 56(4), 888–897. https://doi.org/10.1194/jlr.M056986
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muscoli, S., Ifrim, M., Russo, M., Candido, F., Sanseviero, A., Milite, M., DiLuozzo, M., Marchei, M., & Sangiorgi, G. (2022). Current options and future perspectives in the treatment of dyslipidemia. Journal of Clinical Medicine, 11(16), 4716. https://doi.org/10.3390/jcm11164716
  • Ouyang, T., Niu, G., Zhang, Y., Liu, X., Zhang, X., Zhang, S., Geng, Y., Pang, D., Ouyang, H., & Ren, L. (2019). Porcine HMGCR inhibits porcine circovirus type 2 infection by directly interacting with the viral proteins. Viruses, 11(6), 544. https://doi.org/10.3390/v11060544
  • Rodriguez-Rodriguez, R., Herrera, M. D., De Sotomayor, M. A., & RUIZGUTIERREZ, V. (2007). Pomace olive oil improves endothelial function in spontaneously hypertensive rats by increasing endothelial nitric oxide synthase expression. American Journal of Hypertension, 20(7), 728–734. https://doi.org/10.1016/j.amjhyper.2007.01.012
  • Ruparelia, N., & Choudhury, R. (2020). Inflammation and atherosclerosis: What is on the horizon? Heart (British Cardiac Society), 106(1), 80–85. https://doi.org/10.1136/heartjnl-2018-314230
  • Sánchez-Avila, N., Priego-Capote, F., Ruiz-Jiménez, J., & LUQUEDECASTRO, M. (2009). Fast and selective determination of triterpenic compounds in olive leaves by liquid chromatography–tandem mass spectrometry with multiple reaction monitoring after microwave-assisted extraction. Talanta, 78(1), 40–48. https://doi.org/10.1016/j.talanta.2008.10.037
  • Shi, Y., Leng, Y., Liu, D., Liu, X., Ren, Y., Zhang, J., & Chen, F. (2021). Research advances in protective effects of ursolic acid and oleanolic acid against gastrointestinal diseases. The American Journal of Chinese Medicine, 49(2), 413–435. https://doi.org/10.1142/S0192415X21500191
  • Sirtori, C. R. (2014). The pharmacology of statins. Pharmacological Research, 88, 3–11. https://doi.org/10.1016/j.phrs.2014.03.002
  • Soto-Acosta, R., Bautista-Carbajal, P., Cervantes-Salazar, M., Angel-Ambrocio, A. H., & Del Angel, R. M. (2017). DENV up-regulates the HMG-CoA reductase activity through the impairment of AMPK phosphorylation: A potential antiviral target. PLoS Pathogens, 13(4), e1006257. https://doi.org/10.1371/journal.ppat.1006257
  • Sun, N., Li, D., Chen, X., Wu, P., Lu, Y.-J., Hou, N., Chen, W.-H., & Wong, W.-L. (2019). New applications of oleanolic acid and its derivatives as cardioprotective agents: A review of their therapeutic perspectives. Current pharmaceutical design, 25(35), 3740–3750. https://doi.org/10.2174/1381612825666191105112802
  • Tang, J. J., Li, J. G., Qi, W., Qiu, W.-W., Li, P.-S., Li, B.-L., & Song, B.-L. (2011). Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell metabolism, 13(1), 44–56. https://doi.org/10.1016/j.cmet.2010.12.004
  • Tao, R., Xiong, X., & DePinho, R. A., Deng, C. X., & Dong, X. C. (2013). FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. Journal of Biological Chemistry, 288(41), 29252–29259. https://doi.org/10.1074/jbc.M113.481473
  • Thomas, C., Leleu, D., & Masson, D. (2022). Cholesterol and HIF-1α: Dangerous liaisons in atherosclerosis. Frontiers in Immunology, 13, 868958. https://doi.org/10.3389/fimmu.2022.868958
  • Verma, S., Jain, C. L., Nigam, S., & Padhi, M. M. (2013). Rapid extraction, isolation, and quantification of oleanolic acid from Lantana camara L. Roots using microwave and HPLC-PDA techniques. Acta Chromatographica, 25(1), 181–199. https://doi.org/10.1556/AChrom.25.2013.1.12
  • Wong, L. H., Gatta, A. T., & Levine, T. P. (2019). Lipid transfer proteins: The lipid commute via shuttles, bridges and tubes. Nature reviews. Molecular cell biology, 20(2), 85–101. https://doi.org/10.1038/s41580-018-0071-5
  • Xia, E. Q., Yu, Y. Y., Xu, X. R., Deng, G.-F., Guo, Y.-J., & Li, H.-B. (2012). Ultrasound-assisted extraction of oleanolic acid and ursolic acid from ligustrum lucidum ait. Ultrasonics Sonochemistry, 19(4), 772–776. https://doi.org/10.1016/j.ultsonch.2011.11.014
  • Xu, K., Chu, F., Li, G., Xu, X., Wang, P., Song, J., Zhou, S., & Lei, H. (2014). Oleanolic acid synthetic oligoglycosides: A review on recent progress in biological activities. Die Pharmazie, 69(7), 483–495.
  • Yap, P. G., Choi, S. B., & Liong, M. T. (2020). Allantoin, a potential metabolite that promotes AMPK phosphorylation and suppresses cholesterol biosynthesis via the mevalonate pathway and Bloch pathway. Applied Biochemistry and Biotechnology, 191(1), 226–244. https://doi.org/10.1007/s12010-020-03265-2
  • Yoshioka, H., Coates, H. W., Chua, N. K., Hashimoto, Y., Brown, A. J., & Ohgane, K. (2020). A key mammalian cholesterol synthesis enzyme, squalene monooxygenase, is allosterically stabilized by its substrate. Proceedings of the National Academy of Sciences of the United States of America, 117(13), 7150–7158. https://doi.org/10.1073/pnas.1915923117
  • Zhang, Q., Liu, J., Duan, H., Li, R., Peng, W., & Wu, C. (2021). Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. Journal of Advanced Research, 34, 43–63. https://doi.org/10.1016/j.jare.2021.06.023
  • Zhang, X., Song, Y., Feng, M., Zhou, X., Lu, Y., Gao, L., Yu, C., Jiang, X., & Zhao, J. (2015). Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. Journal of Lipid Research, 56(5), 963–971. https://doi.org/10.1194/jlr.M047654
  • Zhang, M. M., Wang, D., Lu, F., Zhao, R., Ye, X., He, L., Ai, L., & Wu, C.-J. (2021). Identification of the active substances and mechanisms of ginger for the treatment of colon cancer based on network pharmacology and molecular docking. BioData Mining, 14(1), 1. https://doi.org/10.1186/s13040-020-00232-9
  • Zodda, D., Giammona, R., & Schifilliti, S. (2018). Treatment strategy for dyslipidemia in cardiovascular disease prevention: Focus on old and new drugs. Pharmacy (Basel), 6(1), 10. https://doi.org/10.3390/pharmacy6010010