141
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Detection of the thaumatin-like protein gene from Brassica rapa var. oleifera in honey with the Proofman-LMTIA method

, , , , , & show all
Article: 2351912 | Received 09 Jan 2024, Accepted 01 May 2024, Published online: 24 May 2024

References

  • Ali, H., Rafique, K., Ullah, R., Saleem, M., & Ahmad, I. (2022). Classification of Sidr honey and detection of sugar adulteration using right angle fluorescence spectroscopy and chemometrics. European Food Research and Technology, 248(7), 1823–7. https://doi.org/10.1007/s00217-022-04008-9
  • Brar, D. S., Nayik, G. A., Aggarwal, A. K., Kaur, S., Nanda, V., Saxena, S., Gautam, S., Ramniwas, S., & Tolcha, T. D. (2023). Chemical and functional characteristics to detect sugar syrup adulteration in honey from different botanical origins. International Journal of Food Properties, 26(1), 1390–1413. https://doi.org/10.1080/10942912.2023.2218066
  • Calle, J. L. P., Punta-Sánchez, I., González de Peredo, A. V., Ruiz-Rodríguez, A., Ferreiro-González, M., & Palma, M. (2023). Rapid and automated method for detecting and quantifying adulterations in high-quality honey using vis-NIRs in combination with machine learning. Foods, 12(13), 2491. https://doi.org/10.3390/foods12132491
  • Ciursa, P., & Oroian, M. (2021). Voltammetric e-tongue for honey adulteration detection. Sensors, 21(15), 5059. https://doi.org/10.3390/s21155059
  • de Souza, R. R., Fernandes, D. D. D. S., & Diniz, P. H. G. D. (2021). Honey authentication in terms of its adulteration with sugar syrups using UV–vis spectroscopy and one-class classifiers. Food Chemistry, 365, 130467. https://doi.org/10.1016/j.foodchem.2021.130467
  • Ding, S., Chen, G., Wei, Y., Dong, J., Du, F., Cui, X., Huang, X., & Tang, Z. (2021). Sequence-specific and multiplex detection of COVID-19 virus (SARS-CoV-2) using proofreading enzyme-mediated probe cleavage coupled with isothermal amplification. Biosensors and Bioelectronics, 178, 113041. https://doi.org/10.1016/j.bios.2021.113041
  • El Hawari, K., Al Iskandarani, M., Jaber, F., Ezzeddine, R., Ziller, L., Perini, M., Bontempo, L., Pellegrini, M., & Camin, F. (2021). Evaluation of honey authenticity in Lebanon by analysis of carbon stable isotope ratio using elemental analyzer and liquid chromatography coupled to isotope ratio mass spectrometry. Journal of Mass Spectrometry, 56(6). https://doi.org/10.1002/jms.4730
  • Fratianni, F., Amato, G., d’Acierno, A., Ombra, M. N., De Feo, V., Coppola, R., & Nazzaro, F. (2023). In vitro prospective healthy and nutritional benefits of different citrus monofloral honeys. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-27802-1
  • Gonçalves, W. B., Teixeira, W. S. R., Cervantes, E. P., Mioni, M. D. S. R., Sampaio, A. N. D. C. E., Martins, O. A., Gruber, J., & Pereira, J. G. (2023). Application of an electronic nose as a new technology for rapid detection of adulteration in honey. Applied Sciences, 13(8). https://doi.org/10.3390/app13084881
  • Jaafar, M., Othman, M., Yaacob, M., Talip, B., Ilyas, M., Ngajikin, N., & Fauzi, N. (2020). A review on honey adulteration and the available detection approaches. International Journal of Integrated Engineering, 12(2), 125–131. https://doi.org/10.30880/ijie.2020.12.02.015
  • Machado, A. M., Miguel, M. G., Vilas-Boas, M., & Figueiredo, A. C. (2020). Honey volatiles as a fingerprint for botanical origin—A review on their occurrence on monofloral honeys. Molecules, 25(2), 374. https://doi.org/10.3390/molecules25020374
  • Mežnarić, S., Brčić Karačonji, I., Crnković, G., Lesar, A., Pavlešić, T., Vučković, D., & Gobin, I. (2022). Combined inhibitory effect of fir (Abies alba mill.) honeydew honey and probiotic bacteria Lactiplantibacillus plantarum on the growth of salmonella enterica serotype typhimurium. Antibiotics, 11(2), 145. https://doi.org/10.3390/antibiotics11020145
  • Oroian, M., Ropciuc, S., & Paduret, S. (2017). Honey adulteration detection using raman spectroscopy. Food Analytical Methods, 11(4), 959–968. https://doi.org/10.1007/s12161-017-1072-2
  • Palma-Morales, M., Huertas, J. R., & Rodríguez-Pérez, C. (2023). A comprehensive review of the effect of honey on human health. Nutrients, 15(13), 3056. https://doi.org/10.3390/nu15133056
  • Pauliuc, D., Dranca, F., Ropciuc, S., & Oroian, M. (2022). Advanced characterization of monofloral honeys from Romania. Agriculture, 12(4), 526. https://doi.org/10.3390/agriculture12040526
  • Pita-Calvo, C., & Vázquez, M. (2017). Differences between honeydew and blossom honeys: A review. Trends in Food Science & Technology, 59, 79–87. https://doi.org/10.1016/j.tifs.2016.11.015
  • Poulsen-Silva, E., Gordillo-Fuenzalida, F., Velásquez, P., Llancalahuen, F. M., Carvajal, R., Cabaña-Brunod, M., & Otero, M. C. (2023). Antimicrobial, antioxidant, and anti-inflammatory properties of monofloral honeys from Chile. Antioxidants, 12(9), 1785. https://doi.org/10.3390/antiox12091785
  • Ranneh, Y., Akim, A. M., Hamid, H. A., Khazaai, H., Fadel, A., Zakaria, Z. A., Albujja, M., & Bakar, M. F. A. (2021). Honey and its nutritional and anti-inflammatory value. BMC Complementary Medicine and Therapies, 21(1). https://doi.org/10.1186/s12906-020-03170-5
  • Ropciuc, S., Dranca, F., Pauliuc, D., & Oroian, M. (2023). Honey authentication and adulteration detection using emission – excitation spectra combined with chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 293, 122459. https://doi.org/10.1016/j.saa.2023.122459
  • Soares, S., Amaral, J. S., Oliveira, M. B. P. P., & Mafra, I. (2017). A comprehensive review on the main honey authentication issues: Production and origin. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1072–1100. https://doi.org/10.1111/1541-4337.12278
  • Soares, S., Rodrigues, F., & Delerue-Matos, C. (2023). Towards DNA-Based methods analysis for honey: An update. Molecules, 28(5), 2106. https://doi.org/10.3390/molecules28052106
  • Sobrino-Gregorio, L., Vilanova, S., Prohens, J., & Escriche, I. (2019). Detection of honey adulteration by conventional and real-time PCR. Food Control, 95, 57–62. https://doi.org/10.1016/j.foodcont.2018.07.037
  • Song, C., Wang, B., Wang, Y., Liu, J., & Wang, D. (2023). Detection of listeria monocytogenes in food using the proofman-LMTIA assay. Molecules, 28(14), 5457. https://doi.org/10.3390/molecules28145457
  • Tosun, M., & Keles, F. (2021). Investigation methods for detecting honey samples adulterated with sucrose syrup. Journal of Food Composition and Analysis, 101, 101. https://doi.org/10.1016/j.jfca.2021.103941
  • Truong, A. T., Kim, S., & Yoon, B. (2021). Determination of honey adulterated with corn syrup by quantitative amplification of maize residual DNA using ultra‐rapid real‐time PCR. Journal of the Science of Food and Agriculture, 102(2), 774–781. https://doi.org/10.1002/jsfa.11411
  • Wang, Y., Wang, B., & Wang, D. (2022a). Detection of chicken adulteration in beef via ladder-shape melting temperature isothermal amplification (LMTIA) assay. Biotechnology & Biotechnological Equipment, 36(1), 339–345. https://doi.org/10.1080/13102818.2022.2081514
  • Wang, Y., Wang, B., & Wang, D. (2022b). Detection of pork adulteration in beef with ladder-shape melting temperature isothermal amplification (LMTIA) assay. CyTA - Journal of Food, 20(1), 244–250. https://doi.org/10.1080/19476337.2022.2129791
  • Wang, Y., Wang, B., Xu, D., Zhang, M., Zhang, X., & Wang, D. (2022c). Development of a ladder-shape melting temperature isothermal amplification (LMTIA) assay for detection of African swine fever virus (ASFV). Journal of Veterinary Science, 23(4), e51. https://doi.org/10.4142/jvs.22001
  • Wang, D., Wang, Y., Zhang, M., Zhang, Y., Sun, J., Song, C., Xiao, F., Ping, Y., Pan, C., Hu, Y., Wang, C., & Liu, Y. (2021). Ladder-shape melting temperature isothermal amplification of nucleic acids. BioTechniques, 71(1), 358–369. https://doi.org/10.2144/btn-2020-0173
  • Wang, Y., Zhang, M., Wang, D., Zhang, Y., Jiao, X., & Liu, Y. (2020). Development of a real-time LAMP assay for monofloral honey authentication using rape honey. CyTA - Journal of Food, 18(1), 309–314. https://doi.org/10.1080/19476337.2020.1749135
  • Wu, X., Xu, B., Luo, H., Ma, R., Du, Z., Zhang, X., Liu, H., & Zhang, Y. (2023). Adulteration quantification of cheap honey in high-quality Manuka honey by two-dimensional correlation spectroscopy combined with deep learning. Food Control, 154, 154. https://doi.org/10.1016/j.foodcont.2023.110010
  • Xiao, F., Gu, M., Zhang, Y., Xian, Y., Zheng, Y., Zhang, Y., Sun, J., Ding, C., Zhang, G., & Wang, D. (2023). Detection of soybean-derived components in dairy products using proofreading enzyme-mediated probe cleavage coupled with ladder-shape melting temperature isothermal amplification (proofman–LMTIA). Molecules, 28(4), 1685. https://doi.org/10.3390/molecules28041685
  • Xiao, F., Zhang, Y., Gu, M., Xi, X., Zhang, Y., Sun, J., Wei, Q., Hu, B., Zhang, G., & Wang, D. (2024). Comparative study on the target sequences of thaumatin-like protein (TLP) and internal transcribed spacer (ITS) in the detection of corn component in edible oil by ladder-shape melting temperature isothermal amplification (LMTIA). Lwt, 197, 115903. https://doi.org/10.1016/j.lwt.2024.115903
  • You, Z., Mei, Y., Wang, X., Chen, X., & Xu, J. (2021). Droplet digital polymerase chain reaction (ddPCR) for rapid screening of adulterants in honey: A case study on acacia honey adulterated with canola honey. Food Control, 130, 130. https://doi.org/10.1016/j.foodcont.2021.108234
  • Zhang, X., Li, Z., Zhang, Y., Xu, D., Zhang, L., Xiao, F., & Wang, D. (2023). Rapid Discrimination of Panax quinquefolium and Panax ginseng using the proofman-duplex-LMTIA technique. Molecules, 28(19), 6872. https://doi.org/10.3390/molecules28196872