119
Views
0
CrossRef citations to date
0
Altmetric
Research Article

5-n-Alk(en)ylresorcinol accumulation across developmental stages of triticale through comparative metabolite profiling: implications of fresh and dry basis

ORCID Icon & ORCID Icon
Article: 2354520 | Received 12 Mar 2024, Accepted 07 May 2024, Published online: 22 May 2024

References

  • Arent, E., & Zannini, E. (2013). Cereal grains for the food and beverage industries (1st ed.). Woodhead publishing. https://doi.org/10.1533/9780857098924.201
  • Athukorala, Y., Hosseinian, F. S., & Mazza, G. (2010). Extraction and fractionation of alkylresorcinols from triticale bran by two-step supercritical carbon dioxide. LWT - Food Science and Technology, 43(4), 660–11. https://doi.org/10.1016/j.lwt.2009.11.008
  • Baerson, S. R., Schröder, J., Cook, D., Rimando, A. M., Pan, Z., Dayan, F. E., Noonan, B. P., & Duke, S. O. (2010). Alkylresorcinol biosynthesis in plants. Plant Signaling & Behavior, 5(10), 1286–1289. https://doi.org/10.4161/psb.5.10.13062
  • Barrero, A., Cabrera, E., Rodriguez, I., & Planelles, F. (1994). Alkylresorcinols and isocoumarins from ononis pubescens. Phytochemistry, 35(2), 493–498. https://doi.org/10.1016/S0031-9422(00)94789-7
  • Buitrago, D., Buitrago-Villanueva, I., Barbosa-Cornelio, R., & Coy-Barrera, E. (2019). Comparative examination of antioxidant capacity and fingerprinting of unfractionated extracts from different plant parts of quinoa (chenopodium quinoa) grown under greenhouse conditions. Antioxidants, 8(8), 238. https://doi.org/10.3390/antiox8080238
  • Chong, J., Wishart, D. S., & Xia, J. (2019). Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Current Protocols in Bioinformatics, 68(1), e86. https://doi.org/10.1002/cpbi.86
  • Cooper, K. V., Mergoum, M., Singh, P. K., & Pen, R. J. (2009). Triticale: A ‘“new”’ crop with old challenges. In M. J. Carena (Ed.), Cereals. Springer US. https://doi.org/10.1007/978-0-387-72297-9
  • Francisco, J. D. C., Danielsson, B., Kozubek, A., & Dey, E. S. (2005). Application of supercritical carbon dioxide for the extraction of alkylresorcinols from rye bran. The Journal of Supercritical Fluids, 35(3), 220–226. https://doi.org/10.1016/j.supflu.2005.01.010
  • Golovina, E. A., Hoekstra, F. A., & Hemminga, M. A. (1998). Drying increases intracellular partitioning of amphiphilic substances into the lipid Phase1: Impact on membrane permeability and significance for desiccation tolerance. Plant Physiology, 118(3), 975–986. https://doi.org/10.1104/pp.118.3.975
  • Grayer, R. J., & Kokubun, T. (2001). Plant-fungal interactions: The search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry, 56(3), 253–263. https://doi.org/10.1016/S0031-9422(00)00450-7
  • Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, T., Hack, H., & Stauss, R. (1997). Use of the extended BBCH scale—general for the descriptions of the growth stages of mono; and dicotyledonous weed species. Weed Research, 37(6), 433–441. https://doi.org/10.1046/j.1365-3180.1997.d01-70.x
  • Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9(April), 1–21. https://doi.org/10.3389/fpls.2018.00393
  • Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52(1), 39. https://doi.org/10.1186/s40659-019-0246-3
  • Jenks, M. A., Joly, R. J., Peters, P. J., Rich, P. J., Axtell, J. D., & Ashworth, E. N. (1994). Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in sorghum bicolor (L.) Moench. Plant Physiology, 105(4), 1239–1245. https://doi.org/10.1104/pp.105.4.1239
  • Ji, X., & Jetter, R. (2008). Very long chain alkylresorcinols accumulate in the intracuticular wax of rye (secale cereale L.) leaves near the tissue surface. Phytochemistry, 69(5), 1197–1207. https://doi.org/10.1016/j.phytochem.2007.12.008
  • Jones, W. P., & Kinghorn, A. D. (2012). Extraction of plant secondary metabolites. Natural Products Isolation, 3(12), 341–366. https://doi.org/10.1007/978-1-61779-624-1_13
  • Kienzle, S., Carle, R., Sruamsiri, P., Tosta, C., & Neidhart, S. (2014). Occurrence of alk(en)ylresorcinols in the fruits of two mango (mangifera indica L.) cultivars during on-tree maturation and postharvest storage. Journal of Agricultural and Food Chemistry, 62(1), 28–40. https://doi.org/10.1021/jf4028552
  • Knödler, M., Kaiser, A., Carle, R., & Schieber, A. (2008). Profiling of Alk(en)ylresorcinols in cereals by HPLC-DAD-APcI-MS n. Analytical and Bioanalytical Chemistry, 391(1), 221–228. https://doi.org/10.1007/s00216-008-1937-8
  • Korycińska, M., Czelna, K., Jaromin, A., & Kozubek, A. (2009). Antioxidant activity of rye bran alkylresorcinols and extracts from whole-grain cereal products. Food Chemistry, 116(4), 1013–1018. https://doi.org/10.1016/j.foodchem.2009.03.056
  • Kozubek, A., & Tyman, J. H. P. (1999). Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chemical Reviews, 99(1), 1–31. https://doi.org/10.1021/cr970464o
  • Kozubek, A., Zarnowski, R., Stasiuk, M., & Gubernator, J. (2001). Natural amphiphilic phenols as bioactive compounds. Cellular and Molecular Biology Letters, 6(2A), 351–355.
  • Krakowska-Sieprawska, A., Kiełbasa, A., Rafińska, K., Ligor, M., & Buszewski, B. (2022). Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. Molecules, 27(3), 730. https://doi.org/10.3390/molecules27030730
  • Lancashire, P. D., Bleiholder, H., Boom, T. V. D., Langelüddeke, P., Stauss, R., Weber, E., & Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119(3), 561–601. https://doi.org/10.1111/j.1744-7348.1991.tb04895.x
  • Landberg, R., Kamal-Eldin, A., Salmenkallio-Marttila, M., Rouau, X., & Åman, P. (2008). Localization of alkylresorcinols in wheat, rye and barley kernels. Journal of Cereal Science, 48(2), 401–406. https://doi.org/10.1016/j.jcs.2007.09.013
  • Magnucka, E. G., Pietr, S. J., & Zarnowski, R. (2015). Dynamics of alkylresorcinols during rye caryopsis germination and early seedling growth. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 70(3–4), 71–73. https://doi.org/10.1515/znc-2014-4194
  • Marentes-Culma, R., & Coy-Barrera, E. (2022). Effect of soil type on the temporal and spatial 5-n-alk(en)ylresorcinol variation in triticale grown under greenhouse conditions. Journal of Soil Science and Plant Nutrition, 22(4), 4428–4437. https://doi.org/10.1007/s42729-022-01043-z
  • Marentes-Culma, R., Orduz-Díaz, L. L., & Coy-Barrera, E. (2019). Targeted metabolite profiling-based identification of antifungal 5-n-alkylresorcinols occurring in different cereals against Fusarium oxysporum. Molecules, 24(4), 770. https://doi.org/10.3390/molecules24040770
  • Mcgoverin, C. M., Snyders, F., Muller, N., Botes, W., Fox, G., & Manley, M. (2011). A review of triticale uses and the effect of growth environment on grain quality. Jornal Science Food Agriculture, 91(January), 1155–1165. https://doi.org/10.1002/jsfa.4338
  • Melliou, E., Magiatis, P., & Skaltsounis, A. L. (2003). Alkylresorcinol derivatives and sesquiterpene lactones from cichorium spinosum. Journal of Agricultural and Food Chemistry, 51(5), 1289–1292. https://doi.org/10.1021/jf025848g
  • Miché, L., Belkin, S., Rozen, R., & Balandreau, J. (2003). Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environmental Microbiology, 5(5), 403–411. https://doi.org/10.1046/j.1462-2920.2003.00432.x
  • Moldoveanu, S., & David, V. (2015). Solvent extraction. In Modern sample preparation for chromatography (pp. 131–189). Elsevier. https://doi.org/10.1016/B978-0-444-54319-6.00006-2
  • Peña, R. J. (2004). Food uses of triticale. In M. Mergoum and H. Gómez-Macpherson (Eds.), Triticale improvement and production (pp. 119–122). Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).
  • Piasecka, A., Jedrzejczak-Rey, N., & Bednarek, P. (2015). Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytologist, 206(3), 948–964. https://doi.org/10.1111/nph.13325
  • Rebolleda, S., Beltrán, S., Sanz, M. T., González-Sanjosé, M. L., & Solaesa, Á. G. (2013). Extraction of alkylresorcinols from wheat bran with supercritical CO 2. Journal of Food Engineering, 119(4), 814–821. https://doi.org/10.1016/j.jfoodeng.2013.07.008
  • Ross, A. B. (2019). Alkylresorcinols. In J. Johnson and T. Wallace (Eds.), Whole grains and their bioactives: Composition and health (pp. 393–406). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119129486
  • Ross, A., Shepherd, M., Schüpphaus, M., Sinclair, V., Alfaro, B., Kamal-Eldin, A., & Åman, P. (2003). Alkylresorcinols in cereals and cereal products. Journal of Agricultural and Food Chemistry, 51(14), 4111–4118. https://doi.org/10.1021/jf0340456
  • Sampietro, D. A., Belizán, M. M. E., Apud, G. R., Juarez, J. H., Vattuone, M. A., & Catalán, C. A. N. (2013a). Alkylresorcinols: Chemical properties, methods of analysis and potential uses in food, industry and plant protection. Natural Antioxidants and Biocides from Wild Medicinal Plants June 2016, pp. 148–166. https://doi.org/10.1079/9781780642338.0148
  • Sampietro, D. A., Jimenez, C. M., Belizán, M. M., Vattuone, M. A., & Catalán, C. A. N. (2013b). Development and validation of a micromethod for fast quantification of 5-n-alkylresorcinols in grains and whole grain products. Food Chemistry, 141(4), 3546–3551. https://doi.org/10.1016/j.foodchem.2013.06.069
  • Sapirstein, H. D. (2016). Bioactives in wheat bran. Encyclopedia of Food Grains, 1–9. https://doi.org/10.1016/B978-0-12-394437-5.00109-1
  • Schirmer, M. A., Freo, J. D., Müller, M. M., Bueno, P. D. F., Prestes, D. H., & Elias, M. C. (2006). Effects of drying methods and storage period in the industrial quality of wheat. In I. Lorini, B. Bacaltchuk, H. Beckel, D. Deckers, E. Sundfeld. J. P. dos Santos, J. D. Biagi, J. C. Celaro, L. R. D’A. Faroni, L.de O. F. Bortolini, M. R. Sartori, M. C. Elias, R. N. C. Guedes, R. G. da Fonseca, & V. M. Scussel (Eds.), 9th International Working Conference on Stored-Product Protection, Campinas, São Paulo, Brazil, 15–18 October 2006 (pp. 1019–1025). Passo Fundo, RS, Brazil: Brazilian Post-harvest Association–ABRAPOS.
  • Schultz, J. C., Appel, H. M., Ferrieri, A. P., & Arnold, T. M. (2013). Flexible resource allocation during plant defense responses. Frontiers in Plant Science, 4(AUG), 1–11. https://doi.org/10.3389/fpls.2013.00324
  • Shah, I., Shah, M. A., Nawaz, M. A., Pervez, S., Noreen, N., Vargas de la Cruz, C., Khan, F., Blundell, R., Briffa, J., Azzopardi, J., & Niaz, K. (2020). Analysis of other phenolics (capsaicin, gingerol, and alkylresorcinols). In A. S. Silva; S. F. Nabavi; M. Saeedi, and S. M. Nabavi (Eds.), Recent advances in natural products analysis (1st ed. pp. 255–271). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816455-6.00006-8
  • Takeuchi, T., Pereira, G., Braga, M., Maróstica, M., Leal, P., & Meireles, A. (2009). Low-pressure solvent extraction (solid–liquid extraction, microwave assisted, and ultrasound assisted) from condimentary plants. In M. A. Meireles (Ed.), Extracting bioactive compounds for food products: Theory and applications (contemporary food engineering) (1st ed., pp. 137–218). Boca Raton, Fl, USA: CRC Press.
  • Wang, J., Gao, X., & Wang, Z. (2019). Non-destructive determination of alkylresorcinol (ARs) content on wheat seed surfaces and prediction of ARs content in whole-grain flour. Molecules, 24(7), 21–23. https://doi.org/10.3390/molecules24071329
  • Witzenberger, A., Hack, H., & van den Boom, T. (1989). Erlâuterungen zum BBCH-Dezimal-Code fûr die Entwicklungsstadien des Getreides - mit Abbildungen. Gesunde Pflanzen, 41(11), 384–388.
  • Żarnowski, R., Suzuki, Y., Yamaguchi, I., & Pietr, S. J. (2002). Alkylresorcinols in barley (hordeum vulgare L. distichon) grains. Zeitschrift Für Naturforschung C, 57(1–2), 57–62. https://doi.org/10.1515/znc-2002-1-210
  • Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., & Bahadar, K. (2018). Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis, 124, 198–202. https://doi.org/10.1016/j.micpath.2018.08.034
  • Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine (United Kingdom), 13(1), 1–26. https://doi.org/10.1186/s13020-018-0177-x
  • Zhao, X., Huang, L., Kang, L., Jetter, R., Yao, L., Li, Y., Xiao, Y., Wang, D., Xiao, Q., Ni, Y., & Guo, Y. (2019). Comparative analyses of cuticular waxes on various organs of faba bean (vicia faba L.). Plant Physiology and Biochemistry, 139(March), 102–112. https://doi.org/10.1016/j.plaphy.2019.03.015
  • Zhou, L., & Elias, R. J. (2013). Understanding antioxidant and prooxidant mechanisms of phenolics in food lipids. In Lipid oxidation: Challenges in food systems (pp. 297–321). AOCS Press. https://doi.org/10.1016/B978-0-9830791-6-3.50012-6