0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of high pressure processing on the structural and functional properties of the protein in corn gluten meal

ORCID Icon, , , &
Article: 2376227 | Received 24 Apr 2024, Accepted 30 Jun 2024, Published online: 22 Jul 2024

References

  • Achouri, A., & Boye, J. (2013). Thermal processing, salt and high pressure treatment effects on molecular structure and antigenicity of sesame protein isolate. Food Research International, 53(1), 240–7. https://doi.org/10.1016/j.foodres.2013.04.016
  • Dehnad, D., Emadzadeh, B., Ghorani, B., Assadpour, E., Yang, N., & Jafari, S. M. (2024). The influence of high hydrostatic pressure on different properties of legume proteins with an emphasis on soy proteins; a comprehensive review. Food Hydrocolloids, 146, 109188. https://doi.org/10.1016/j.foodhyd.2023.109188
  • Gao, Y., Hao, X., Hu, Y., Zhou, N., Ma, Q., Zou, L., & Yao, Y. (2023). Modification of the functional properties of chickpea proteins by ultrasonication treatment and alleviation of malnutrition in rat. Food and Function, 14(3), 1773–1784. https://doi.org/10.1039/D2FO02492F
  • Gravel, A., Dubois-Laurin, F., & Doyen, A. (2022). Effects of hexane on protein profile and techno-functional properties of pea protein isolates. Food Chemistry, 406, 135069. https://doi.org/10.1016/j.foodchem.2022.135069
  • Guan, H., Diao, X., Liu, D., Han, J., Kong, B., Liu, D., Gao, C., & Zhang, L. (2020). Effect of high-pressure processing enzymatic hydrolysates of soy protein isolate on the emulsifying and oxidative stability of myofibrillar protein-prepared oil-in water emulsions. Journal of the Science of Food and Agriculture, 100(10), 3910–3919. https://doi.org/10.1002/jsfa.10433
  • He, X., Liu, H., Liu, L., Zhao, G., Wang, Q., & Chen, Q. (2014). Effects of high pressure on the physicochemical and functional properties of peanut protein isolates. Food Hydrocolloids, 36, 123–129. https://doi.org/10.1016/j.foodhyd.2013.08.031
  • Jin, J., Ma, H., Wang, K., Yagoub, A., Owusu, J., Qu, W., He, R., Zhou, C., & Ye, X. (2015). Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrasonics Sonochemistry, 24, 55–64. https://doi.org/10.1016/j.ultsonch.2014.12.013
  • Jin, J., Ma, H., Zhou, C., Luo, M., Liu, W., Qu, W., He, R., Luo, L., & Yagoub, A. E. G. A. (2015). Effect of degree of hydrolysis on the bioavailability of corn gluten meal hydrolysates. Journal of the Science of Food and Agriculture, 95(12), 2501–2509. https://doi.org/10.1002/jsfa.6982
  • Kopparapu, N., Duan, Y., Huang, L., & Katrolia, P. (2022). Review on utilisation of corn gluten meal, a by-product from corn starch industry for production of value-added products. International Journal of Food Science and Technology, 57(9), 5592–5599. https://doi.org/10.1111/ijfs.15541
  • Li, H., Zhu, K., Zhou, H., & Peng, W. (2011). Effects of high hydrostatic pressure on some functional and nutritional properties of soy protein isolate for infant formula. Journal of Agricultural and Food Chemistry, 59(22), 12028–12036. https://doi.org/10.1021/jf203390e
  • Liang, Y., Guo, B., Zhou, A., Xiao, S., & Liu, X. (2017). Effect of high pressure treatment on gel characteristics and gel formation mechanism of bighead carp (Aristichthys nobilis) surimi gels. Journal of Food Processing and Preservation, 41(5), e13155. https://doi.org/10.1111/jfpp.13155
  • Ma, S., Zhang, M., Shi, Y., Wang, H., & Chu, H. (2021). Effects of ultrahigh pressure treatment on eating quality of steamed oat and oat protein structure. CyTA-Journal of Food, 19(1), 56–62. https://doi.org/10.1080/19476337.2020.1857847
  • Malomo, S., He, R., & Aluko, R. (2014). Structural and functional properties of hemp seed protein products. Journal of Food Science, 79(8), C1512–C1521. https://doi.org/10.1111/1750-3841.12537
  • Medrano, A., Abirached, C., Panizzolo, L., Moyna, P., & Añón, M. C. (2009). The effect of glycation on foam and structural properties of β-lactoglobulin. Food Chemistry, 113(1), 127–133. https://doi.org/10.1016/j.foodchem.2008.07.036
  • Mirzaee, H., Gavlighi, H., Mehdi, N., Udenigwe, C., & Khodaiyan, F. (2022). Relation of amino acid composition, hydrophobicity, and molecular weight with antidiabetic, antihypertensive, and antioxidant properties of mixtures of corn gluten and soy protein hydrolysates. Food Science and Nutrition, 11(3), 1257–1271. https://doi.org/10.1002/fsn3.3160
  • Nie, Y., Zhang, W., Tian, G., Wang, Z., Gan, W., & Gao, H. (2021). Optimized the emulsifying properties of quinoa protein by ultra-high pressure treatment. Chinese Journal of High Pressure Physics, 35(3), 035901–1–10.
  • Peyrano, F., Lamballerie, M., Avanza, M., & Speroni, F. (2020). Gelation of cowpea proteins induced by high hydrostatic pressure. Food Hydrocolloids, 111, 106191. https://doi.org/10.1016/j.foddhyd.2020.106191
  • Pu, H., Liu, G., Huang, M., Zhang, C., Niu, W., Chen, X., & Huang, J. (2021). Effect of annealing on ultra-high pressure induced gelatinization of corn starch. Innovative Food Science and Emerging Technologies, 74, 102849. https://doi.org/10.1016/j.ifset.2021.102849
  • Puppo, C., Chapleau, N., Speroni, F., de Lamballerie-Anton, M., Michel, F., Anon, C., & Anton, M. (2004). Physicochemical modifications of high-pressure-treated soybean protein isolates. Journal of Agricultural and Food Chemistry, 52(6), 1564–1571. https://doi.org/10.1021/jf034813t
  • Razi, S., Mohebbi, M., Mirzababaee, S., Hesarineja, M., & Movahed, M. (2024). The effect of high hydrostatic pressure on the structure of whey proteins-guar gum mixture. Heliyon, 10(1), e24140. https://doi.org/10.1016/j.heliyon.2024.e24140
  • Schwenke, K. D., Prahl, L., Rauschal, E., Gwiazda, S., Dabrowski, K., & Rutkowski, A. (1981). Functional properties of plant proteins. Part 2. Selected physicochemical properties of native and denatured protein isolates from faba beans, soybeans, and sunflower seed. Food/Nahrung, 25(1), 59–69. https://doi.org/10.1002/food.19810250109
  • Shen, Y., Hu, R., & Li, Y. (2019). Antioxidant and emulsifying activities of corn gluten meal hydrolysates in oil‐in‐water emulsions. Journal of the American Oil Chemists’ Society, 97, 175–185. https://doi.org/10.1002/aocs.12286
  • Tang, C., & Ma, C. (2009). Effect of high pressure treatment on aggregation and structural properties of soy protein isolate. Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology, 42(2), 606–611. https://doi.org/10.1016/j.lwt.2008.07.012
  • Tian, Y., Zhao, J., Xie, Z., Wang, J., Xu, X., & Jin, Z. (2014). Effect of different pressure-soaking treatments on color, texture, morphology and retrogradation properties of cooked rice. LWT-Food Science and Technology, 55(1), 368–373. https://doi.org/10.1016/j.lwt.2013.09.020
  • Wang, X., Tang, C., Li, B., Yang, X., Li, L., & Ma, C. (2008). Effects of high pressure treatment on some physicochemical and functional properties of soy protein isolate. Food Hydrocolloids, 22(4), 560–567. https://doi.org/10.1016/j.foodhyd.2007.01.027
  • Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., & Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260–267. https://doi.org/10.1016/j.foodres.2018.04.044
  • Xu, A., Alashi, A., Gbadamosi, S., Taiwo, K., Oyedele, D., Adebooye, O., Aluko, R. E. (2020). Comparative study of the structural and functional properties of protein isolates prepared from edible vegetable leaves. International Journal of Food Properties, 23(1), 955–970. https://doi.org/10.1080/10942912.2020.1772285
  • Xu, Y., Sismour, E., Tucker, F., Rasberry, J., Zhao, W., Rao, Q., Zhao, Y., Haff, R., Yousuf, A., Gao, M., & Chen, A. (2024). Structural and functional properties of kabuli chickpea protein as affected by high hydrostatic pressures. ACS Food Science & Technology, 4(2), 528–536. https://doi.org/10.1021/acsfoodscitech.3c00640
  • Yin, S., Tang, C., Wen, Q., Yang, X., & Li, L. (2008). Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect of high-pressure treatment. Food Chemistry, 110(4), 938–945. https://doi.org/10.1016/j.foodchem.2008.02.090
  • Zengin, K., Ozel, B., Oztop, M., & Alpas, H. (2024). Effect of high hydrostatic pressure on the functional properties of soy protein isolate. Journal of Food Process Engineering, 47(3), e14578. https://doi.org/10.1111/jfpe.14578
  • Zhang, Z., Li, Y., Lee, M., Ravanfar, R., Padilla-Zakour, O., & Abbaspourrad, A. (2020). The impact of high-pressure processing on the structure and sensory properties of egg white-whey protein mixture at acidic conditions. Food Bioprocess Technology, 13(2), 379–389. https://doi.org/10.1007/s11947-019-02397-6
  • Zhao, F. (2019). Effects of physical pretreatment on structure and physicochemical properties of soybean protein isolate. Shandong Agricultural University, Taian, 53–62.
  • Zheng, J., Yin, H., Shen, C., Zhang, L., Ren, D., & Lu, J. (2020). Functional and structural properties of spirulina phycocyanin modified by ultra-high-pressure composite glycation. Food Chemistry, 306, 125615. https://doi.org/10.1016/j.foodchem.2019.125615
  • Zheng, X., Liu, X., Yu, S., Wang, X., Ma, Y., Yang, S., & Jing, S.-S. (2014). Effects of extrusion and starch removal pretreatment on zein proteins extracted from corn gluten meal. Cereal Chemistry, 91(5), 496–501. https://doi.org/10.1094/CCHEM-07-13-0141-R
  • Zheng, X., Wang, J., Liu, X., Sun, Y., Zheng, Y., Wang, X., & Liu, Y. (2015). Effect of hydrolysis time on the physicochemical and functional properties of corn glutelin by protamex hydrolysis. Food Chemistry, 172, 407–415. https://doi.org/10.1016/j.foodchem.2014.09.080
  • Zhou, Y., Quyang, B., Du, L., Wei, Y., Zhou, X., Xiao, Y., & Wang, Y. (2022). Effect of ultra-high-pressure treatment on the structural and functional properties of buckwheat 13S globulin. Food Science and Human Wellness, 11(4), 895–903. https://doi.org/10.1016/j.fshw.2022.03.008
  • Zou, H., Xu, Z., Zhao, L., Wang, Y., & Liao, X. (2019). Effects of high pressure processing on the interaction of α-lactalbumin and pelargonidin-3-glucoside. Food Chemistry, 285, 22–30. https://doi.org/10.1016/j.foodchem.2019.01.129