19,853
Views
136
CrossRef citations to date
0
Altmetric
Review

Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components

, ORCID Icon, & ORCID Icon
Pages 1-20 | Received 14 Jan 2019, Accepted 26 Apr 2019, Published online: 22 May 2019

References

  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016 Aug;14(8):e1002533. PubMed PMID: 27541692; PubMed Central PMCID: PMC4991899. doi:10.1371/journal.pbio.1002533.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature PubMed PMID: 20203603; PubMed Central PMCID: PMC3779803. 2010 Mar 4;464(7285):59–65. doi:10.1038/nature08821.
  • Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev. 2010 Dec;23(2):366–384. PubMed PMID: WOS:000284716700012. doi:10.1017/s0954422410000247.
  • Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010 Jul;90(3):859–904. PubMed PMID: 20664075. doi:10.1152/physrev.00045.2009.
  • Blumberg R, Powrie F. Microbiota, disease, and back to health: a metastable journey. Sci Transl Med PubMed PMID: 22674557; PubMed Central PMCID: PMC5020897. 2012 Jun 6;4(137):137rv7. doi:10.1126/scitranslmed.3004184.
  • Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995 Jun;125(6):1401–1412. doi:10.1093/jn/125.6.1401. PubMed PMID: 7782892.
  • Kaplan H, Rw H. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol. 2000 Jun;66(6):2682–2684. PubMed PMID: 10831458; PubMed Central PMCID: PMC110601.
  • Macfarlane GT, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008 Feb;104(2):305–344. PubMed PMID: 18215222. doi:10.1111/j.1365-2672.2007.03520.x.
  • Macfarlane S, Macfarlane GT, Cummings JH. Review article: prebiotics in the gastrointestinal tract. Aliment Pharm Therap PubMed PMID: WOS:000239799800001; English. 2006 Sep 1;24(5):701–714. doi:10.1111/j.1365-2036.2006.03042.x.
  • Davis LM, Martinez I, Walter J, Hutkins R. A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. Int J Food Microbiol PubMed PMID: 21059476. 2010 Dec 15;144(2):285–292. doi:10.1016/j.ijfoodmicro.2010.10.007.
  • Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, et al. Human genetics shape the gut microbiome. Cell PubMed PMID: 25417156; PubMed Central PMCID: PMC4255478. 2014 Nov 6;159(4):789–799. doi:10.1016/j.cell.2014.09.053.
  • Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJM, Garcia-Gil LJ, Flint HJ. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol. 2012 Jan;78(2):420–428. PubMed PMID: 22101049; PubMed Central PMCID: PMC3255724. doi:10.1128/AEM.06858-11.
  • Belzer C, Lw C, Aalvink S, Chamlagain B, Piironen V, Knol J, de Vos WM, Dubilier N. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. mBio. 2017 Sep 19;8(5). PubMed PMID: 28928206; PubMed Central PMCID: PMC5605934. doi:10.1128/mBio.00770-17.
  • Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol. 2004 Oct;70(10):5810–5817. PubMed PMID: 15466518; PubMed Central PMCID: PMC522113. doi:10.1128/AEM.70.10.5810-5817.2004.
  • Riviere A, Gagnon M, Weckx S, Roy D, De Vuyst L. Mutual cross-feeding interactions between bifidobacterium longum subsp longum NCC2705 and eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan oligosaccharides. Appl Environ Microbiol. 2015 Nov;81(22):7767–7781. PubMed PMID: WOS:000363463800010; English. doi:10.1128/Aem.02089-15.
  • Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetateCoA-transferase gene. Environ Microbiol. 2010 Feb;12(2):304–314. PubMed PMID: WOS:000274234600003; English. doi:10.1111/j.1462-2920.2009.02066.x.
  • Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009 May;294(1):1–8. PubMed PMID: WOS:000264882000001; English. doi:10.1111/j.1574-6968.2009.01514.x.
  • Allen-Vercoe E, Daigneault M, White A, Panaccione R, Duncan SH, Flint HJ, O’Neal L, Lawson PA. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe. 2012 Oct;18(5):523–529. PubMed PMID: WOS:000310943200008; English. doi:10.1016/j.anaerobe.2012.09.002.
  • Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014 Aug;63(8):1275–1283. PubMed PMID: 24021287. doi:10.1136/gutjnl-2013-304833.
  • Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014 Jun;8(6):1323–1335. PubMed PMID: 24553467; PubMed Central PMCID: PMC4030238. doi:10.1038/ismej.2014.14.
  • Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ. Roseburia intestinalis sp nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Micr. 2002 Sep;52. 1615–1620. PubMed PMID: WOS:000178117500021; English. doi: 10.1099/ijs.0.02143-0.
  • Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJM, Thiele I. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol. 2014 Sep;196(18):3289–3302. PubMed PMID: 25002542; PubMed Central PMCID: PMC4135701. doi:10.1128/JB.01780-14.
  • Miquel S, Martin R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013 Jun;16(3):255–261. PubMed PMID: 23831042. doi:10.1016/j.mib.2013.06.003.
  • Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016 Jul;24(7):523–524. PubMed PMID: 26996766. doi:10.1016/j.tim.2016.02.015.
  • Ze XL, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012 Aug;6(8):1535–1543. PubMed PMID: WOS:000306495800009; English. doi:10.1038/ismej.2012.4.
  • Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016 Jun 29;4(1):33. doi:10.1186/s40168-016-0178-x. 10.1186/s40168-016-0178-x. PubMed PMID: 27357127; PubMed Central PMCID: PMC4928258.
  • Cani PD, de Vos WM. Next-generation beneficial microbes: the case of akkermansia muciniphila. Front Microbiol PubMed PMID: 29018410; PubMed Central PMCID: PMC5614963. 2017;8:1765. doi:10.3389/fmicb.2017.01765.
  • Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A PubMed PMID: WOS:000320500000075; English. 2013 May 28;110(22):9066–9071. doi:10.1073/pnas.1219451110.
  • Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramírez S, Delzenne NM, Gomis R, Claret M, Cani PD. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015 Nov 13;5:16643. PubMed PMID: 26563823; PubMed Central PMCID: PMC4643218. doi:10.1038/srep16643.
  • Gl H, Schwiertz A, Ri A, Blaut M, Flint HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol. 2003 Jul;69(7):4320–4324. PubMed PMID: 12839823; PubMed Central PMCID: PMC165216.
  • Fujio-Vejar S, Vasquez Y, Morales P, Magne F, Vera-Wolf P, Ugalde JA, Navarrete P, Gotteland M. The gut microbiota of healthy chilean subjects reveals a high abundance of the phylum verrucomicrobia. Front Microbiol PubMed PMID: 28713349; PubMed Central PMCID: PMC5491548. 2017;8:1221. doi:10.3389/fmicb.2017.01221.
  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux -J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16731–16736. PubMed PMID: 18936492; PubMed Central PMCID: PMC2575488. doi:10.1073/pnas.0804812105.
  • Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. 2017 May;106:171–181. PubMed PMID: 26875998. doi:10.1016/j.micpath.2016.02.005.
  • Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2008 Mar;74(5):1646–1648. PubMed PMID: WOS:000253792700041; English. doi:10.1128/Aem.01226-07.
  • Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Micr. 2004 Sep;54:1469–1476. PubMed PMID: WOS:000224259100007; English. doi: 10.1099/ijs.0.2873-0.
  • Tramontano M, Andrejev S, Pruteanu M, Klunemann M, Kuhn M, Galardini M, Jouhten P, Zelezniak A, Zeller G, Bork P, et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol. 2018 Mar 19. PubMed PMID: 29556107. doi: 10.1038/s41564-018-0123-9.
  • Ma N, Guo P, Zhang J, He T, Kim SW, Zhang G, Ma X. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front Immunol. 2018;9:5. PubMed PMID: 29416535; PubMed Central PMCID: PMC5787545. doi:10.3389/fimmu.2018.00005.
  • Leonel AJ, Alvarez-Leite JI. Butyrate: implications for intestinal function. Curr Opin Clin Nutr. 2012 Sep;15(5):474–479. PubMed PMID: WOS:000307826500012; English. doi:10.1097/MCO.0b013e32835665fa.
  • Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006 Mar;40(3):235–243. PubMed PMID: WOS:000236816600015; English. doi:10.1097/00004836-200603000-00015.
  • Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extrainitestinal diseases. World J Gastroentero. 2011 Mar 28;17(12):1519–1528. PubMed PMID: WOS:000289611300001; English. doi:10.3748/wjg.v17.i12.1519.
  • Liu H, Wang J, He T, Becker S, Zhang G, Li D, Ma X. Butyrate: a double-edged sword for health? Adv Nutr. 2018 Jan 1;9(1):21–29. PubMed PMID: 29438462; PubMed Central PMCID: PMC6333934. doi:10.1093/advances/nmx009.
  • Huang C, Song P, Fan P, Hou C, Thacker P, Ma X. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. J Nutr. 2015 Dec;145(12):2774–2780. PubMed PMID: 26491121. doi:10.3945/jn.115.217406.
  • Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014 Oct;12(10):661–672. PubMed PMID: WOS:000342267900008; English. doi:10.1038/nrmicro3344.
  • Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016 Feb 17;7:Artn 185. PubMed PMID: WOS:000370222600001; English. doi:10.3389/Fmicb.2016.00185.
  • Munoz-Tamayo R, Laroche B, Walter E, Doré J, Duncan SH, Flint HJ, Leclerc M. Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol Ecol. 2011 Jun;76(3):615–624. PubMed PMID: WOS:000290314900018; English. doi:10.1111/j.1574-6941.2011.01085.x.
  • Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017 Aug;14(8):491–502. PubMed PMID: 28611480. doi:10.1038/nrgastro.2017.75.
  • Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004 Dec;17(2):259–275. PubMed PMID: 19079930. doi:10.1079/NRR200479.
  • Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015 May;12(5):303–310. PubMed PMID: 25824997. doi:10.1038/nrgastro.2015.47.
  • Sun Y, O‘Riordan MX. Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Adv Appl Microbiol. 2013;85:93–118. PubMed PMID: 23942149; PubMed Central PMCID: PMC4029053. doi:10.1016/B978-0-12-407672-3.00003-4.
  • Cummings JH, Macfarlane GT. Gastrointestinal effects of prebiotics. Brit J Nutr. 2002 May;87:S145–S151. PubMed PMID: WOS:000176469700002; English. doi:10.1079/Bn/2002530.
  • Marteau P, Seksik P. Tolerance of probiotics and prebiotics. J Clin Gastroenterol. 2004 Jul;38(6):S67–S69. PubMed PMID: WOS:000222317000005; English. doi:10.1097/01.mcg.0000128929.37156.a7.
  • Cummings JH, Macfarlane GT, Englyst HN. Prebiotic digestion and fermentation. Am J Clin Nutr. 2001 Feb;73(2):415s–420s. PubMed PMID: WOS:000166608200010; English. doi:10.1093/ajcn/73.2.415s.
  • Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PGB, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen J-P, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013 Aug;62(8):1112–1121. PubMed PMID: 23135760; PubMed Central PMCID: PMC3711491. doi:10.1136/gutjnl-2012-303304.
  • Liu F, Li P, Chen M, Luo Y, Prabhakar M, Zheng H, He Y, Qi Q, Long H, Zhang Y, et al. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) increase bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Sci Rep. 2017 Sep 18;7(1):11789. 10.1038/s41598-017-10722-2. PubMed PMID: 28924143; PubMed Central PMCID: PMC5603605. doi:10.1038/s41598-017-10722-2.
  • Azcarate-Peril MA, Ritter AJ, Savaiano D, Monteagudo-Mera A, Anderson C, Magness ST, Klaenhammer TR. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):E367–E375. PubMed PMID: 28049818; PubMed Central PMCID: PMC5255593. doi:10.1073/pnas.1606722113.
  • Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr. 2009 Feb;101(4):541–550. PubMed PMID: 18590586. doi:10.1017/S0007114508019880.
  • Vandeputte D, Falony G, Vieira-Silva S, Wang J, Sailer M, Theis S, Verbeke K, Raes J. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut. 2017 Nov;66(11):1968–1974. PubMed PMID: 28213610; PubMed Central PMCID: PMC5739857. doi:10.1136/gutjnl-2016-313271.
  • Moreno-Indias I, Sanchez-Alcoholado L, Perez-Martinez P, Andrés-Lacueva C, Cardona F, Tinahones F, Queipo-Ortuño MI. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct. 2016 Apr;7(4):1775–1787. PubMed PMID: 26599039. doi:10.1039/c5fo00886g.
  • Queipo-Ortuno MI, Boto-Ordonez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R, Cardona Diaz F, Andrés-Lacueva C, Tinahones FJ. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 2012 Jun;95(6):1323–1334. PubMed PMID: 22552027. doi:10.3945/ajcn.111.027847.
  • Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JPE. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr. 2011 Jan;93(1):62–72. PubMed PMID: WOS:000285453500010; English. doi:10.3945/ajcn.110.000075.
  • Finegold SM, Li ZP, Summanen PH, Downes J, Thames G, Corbett K, Dowd S, Krak M, Heber D. Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct. 2014 Mar;5(3):436–445. PubMed PMID: WOS:000333226000003; English. doi:10.1039/c3fo60348b.
  • Maier TV, Lucio M, Lee LH, VerBerkmoes NC, Brislawn CJ, Bernhardt J, Lamendella R, McDermott JE, Bergeron N, Heinzmann SS, et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. mBio. 2017 Oct 17;8(5). PubMed PMID: 29042495; PubMed Central PMCID: PMC5646248. doi:10.1128/mBio.01343-17.
  • Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010 Dec;2(12):1231–1246. PubMed PMID: WOS:000298239500003; English. doi:10.3390/nu2121231.
  • Lunet N, Lacerda-Vieira A, Barros H. Fruit and vegetables consumption and gastric cancer: a systematic review and meta-analysis of cohort studies. Nutr Cancer. 2005;53(1):1–10. PubMed PMID: 16351501. doi:10.1207/s15327914nc5301_1.
  • Chong MF, Macdonald R, Lovegrove JA. Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr. 2010 Oct;104(Suppl 3):S28–39. doi:10.1017/S0007114510003922. PubMed PMID: 20955648.
  • Liu YJ, Zhan J, Liu XL, Wang Y, Ji J, He -Q-Q. Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin Nutr. 2014 Feb;33(1):59–63. PubMed PMID: 23591151. doi:10.1016/j.clnu.2013.03.011.
  • Zamora-Ros R, Forouhi NG, Sharp SJ, González CA, Buijsse B, Guevara M, van der Schouw YT, Amiano P, Boeing H, Bredsdorff L, et al. Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J Nutr. 2014 Mar;144(3):335–343. PubMed PMID: 24368432; PubMed Central PMCID: PMC3927546. doi:10.3945/jn.113.184945.
  • Park OJ, Surh YJ. Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicol Lett. 2004 Apr 15;150(1):43–56. PubMed PMID: 15068824. doi:10.1016/j.toxlet.2003.06.001.
  • Cardona F, Andres-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuno MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013 Aug;24(8):1415–1422. PubMed PMID: 23849454. doi:10.1016/j.jnutbio.2013.05.001.
  • Anhe FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015 Jun;64(6):872–883. PubMed PMID: 25080446. doi:10.1136/gutjnl-2014-307142.
  • Pierre JF, Heneghan AF, Feliciano RP, Shanmuganayagam D, Roenneburg DA, Krueger CG, Reed JD, Kudsk KA. Cranberry proanthocyanidins improve the gut mucous layer morphology and function in mice receiving elemental enteral nutrition. JPEN J Parenteral Enteral Nutr. 2013 May-Jun;37(3):401–409. PubMed PMID: 23064255; PubMed Central PMCID: PMC4564871. doi:10.1177/0148607112463076.
  • Baldwin J, Collins B, Wolf PG, Martinez K, Shen W, Chuang -C-C, Zhong W, Cooney P, Cockrell C, Chang E, et al. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. J Nutr Biochem. 2016 Jan;27:123–135. PubMed PMID: 26423887; PubMed Central PMCID: PMC4933288. doi:10.1016/j.jnutbio.2015.08.027.
  • Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I. Dietary polyphenols promote growth of the gut bacterium akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes. 2015 Aug;64(8):2847–2858. PubMed PMID: 25845659; PubMed Central PMCID: PMC4512228. doi:10.2337/db14-1916.
  • Tzounis X, Vulevic J, Kuhnle GG, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JPE. Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr. 2008 Apr;99(4):782–792. PubMed PMID: 17977475. doi:10.1017/S0007114507853384.
  • Samanta AK, Jayapal N, Jayaram C, Roy S, Kolte AP, Senani S, Sridhar M. Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydr Dietary Fibre. 2015 Jan 01;5(1):62–71. doi:10.1016/j.bcdf.2014.12.003.
  • Scott KP, Martin JC, Duncan SH, Flint HJ. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol. 2014 Jan;87(1):30–40. PubMed PMID: 23909466. doi:10.1111/1574-6941.12186.
  • Lecerf JM, Depeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, Cayzeele A, Abdelnour G, Jaruga A, Younes H, et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br J Nutr. 2012 Nov 28;108(10):1847–1858. PubMed PMID: 22264499. doi:10.1017/S0007114511007252.
  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012 Jul-Aug;3(4):289–306. PubMed PMID: 22572875; PubMed Central PMCID: PMC3463488. doi:10.4161/gmic.19897.
  • Gullon B, P G, Tavaria F, Pintado M, Gomes AM, Alonso JL, Parajó JC. Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran. J Funct Foods. 2014 Jan;6:438–449. PubMed PMID: WOS:000331423000044; English. doi:10.1016/j.jff.2013.11.010.
  • Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F, Cani PD, Larondelle Y, Delzenne NM, Brennan L. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, roseburia and bacteroides/prevotella in diet-induced obese mice. PLoS One. 2011 Jun 9;6(6):ARTN e20944. PubMed PMID: WOS:000291612900042; English. doi:10.1371/journal.pone.0020944.
  • Van Craeyveld V, Swennen K, Dornez E, Van de Wiele T, Marzorati M, Verstraete W, Delaedt Y, Onagbesan O, Decuypere E, Buyse J, et al. Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J Nutr. 2008 Dec;138(12):2348–2355. PubMed PMID: WOS:000261038300010; English. doi:10.3945/jn.108.094367.
  • Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Wells JM, Flint HJ, Duncan SH. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol. 2017 Nov;93(11):ARTN fix127. PubMed PMID: WOS:000416389100005; English. doi:10.1093/femsec/fix127.
  • Gullon B, B G, Martinez-Sabajanes M, Yáñez R, Parajó JC, Alonso JL. Pectic oligosaccharides: manufacture and functional properties. Trends Food Sci Tech. 2013 Apr;30(2):153–161. PubMed PMID: WOS:000318391900006; English. doi:10.1016/j.tifs.2013.01.006.
  • Koulsos A, Lima M, Conterno L, Gasperotti M, Bianchi M, Fava F, Vrhovsek U, Lovegrove J, Tuohy K. Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model. Nutrients. 2017 Jun;9(6):Artn 533. PubMed PMID: WOS:000404177100004; English. doi:10.3390/Nu9060533.
  • Gomez B, Gullon B, Yanez R, Schols H, Alonso JL. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. J Funct Foods. 2016 Jan;20:108–121. doi:10.1016/j.jff.2015.10.029. PubMed PMID: WOS:000375634900011.
  • Goffin D, Delzenne N, Blecker C, Hanon E, Deroanne C, Paquot M. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit Rev Food Sci Nutr. 2011 May;51(5):394–409. PubMed PMID: 21491266. doi:10.1080/10408391003628955.
  • Singh DP, Singh S, Bijalwan V, Kumar, V. Khare P, Baboota RK, Singh P, Boparai RK, Singh J, Kondepudi KK, et al. Co-supplementation of isomalto-oligosaccharides potentiates metabolic health benefits of polyphenol-rich cranberry extract in high fat diet-fed mice via enhanced gut butyrate production. Eur J Nutr. 2017 Nov 10. PubMed PMID: 29127476. doi:10.1007/s00394-017-1561-5.
  • Re W, Ninonuevo M, Da M, Lebrilla CB, German JB. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol Nutr Food Res. 2007 Nov;51(11):1398–1405. PubMed PMID: 17966141. doi:10.1002/mnfr.200700150.
  • Elison E, Vigsnaes LK, Rindom Krogsgaard L, Rasmussen J, Sørensen N, McConnell B, Hennet T, Sommer MOA, Bytzer P. Oral supplementation of healthy adults with 2‘-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr. 2016 Oct;116(8):1356–1368. PubMed PMID: 27719686; PubMed Central PMCID: PMC5082288. doi:10.1017/S0007114516003354.
  • Marcobal A, Barboza M, Jw F, Block DE, German JB, Lebrilla CB, Mills DA. Consumption of human milk oligosaccharides by gut-related microbes. J Agr Food Chem. 2010 May 12;58(9):5334–5340. PubMed PMID: WOS:000277237500018; English. doi:10.1021/jf9044205.
  • Rycroft CE, Jones MR, Gibson GR, Rastall RA. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol. 2001 Nov;91(5):878–887. PubMed PMID: 11722666.
  • Zheng J, Li H, Zhang X, Jiang M, Luo C, Lu Z, Xu Z, Shi J. Prebiotic mannan-oligosaccharides augment the hypoglycemic effects of metformin in correlation with modulating gut microbiota. J Agric Food Chem. 2018 Jun 13;66(23):5821–5831. PubMed PMID: 29701959. doi:10.1021/acs.jafc.8b00829.
  • Ehara T, Izumi H, Tsuda M, Nakazato Y, Iwamoto H, Namba K, Takeda Y. Combinational effects of prebiotic oligosaccharides on bifidobacterial growth and host gene expression in a simplified mixed culture model and neonatal mice. Br J Nutr. 2016 Jul;116(2):270–278. PubMed PMID: 27198516. doi:10.1017/S0007114516001987.
  • Abell GC, Cooke CM, Bennett CN, Conlon MA, McOrist AL. Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol Ecol. 2008 Dec;66(3):505–515. PubMed PMID: 18616586. doi:10.1111/j.1574-6941.2008.00527.x.
  • Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J, Heimesaat MM. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One. 2010 Nov 29;5(11):e15046. PubMed PMID: 21151493; PubMed Central PMCID: PMC2993935. doi:10.1371/journal.pone.0015046.
  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011 Feb;5(2):220–230. PubMed PMID: 20686513; PubMed Central PMCID: PMC3105703. doi:10.1038/ismej.2010.118.
  • Baxter NT, Schmidt AW, Venkataraman A, Cheng M, Zhang B, Zhang H, Gerstenecker GS, Pakrasi HB, Gross ML, Blankenship RE. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019 Jan 29;10(1). PubMed PMID: 30696735; PubMed Central PMCID: PMC6355990. doi:10.1128/mBio.02566-18.
  • Zaman SA, Sarbini SR. The potential of resistant starch as a prebiotic. Crit Rev Biotechnol. 2016;36(3):578–584. PubMed PMID: 25582732. doi:10.3109/07388551.2014.993590.
  • O‘Sullivan L, Murphy B, McLoughlin P, Duggan P, Lawlor PG, Hughes H, Gardiner GE. Prebiotics from marine macroalgae for human and animal health applications. Mar Drugs. 2010 Jul 8;7. 2038–2064. PubMed PMID: WOS:000280347100006; English. doi: 10.3390/md8072038.
  • Okolie CL, Rajendran SRCK, Udenigwe CC, Aryee ANA, Mason B. Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators. J Food Biochem. 2017 Oct;41(5):ARTN e12392. PubMed PMID: WOS:000412117000006; English. doi:10.1111/jfbc.12392.
  • Zvyagintseva TN, Shevchenko NM, Popivnich IB, Isakov VV, Scobun AS, Sundukova EV, Elyakova LA. A new procedure for the separation of water-soluble polysaccharides from brown seaweeds. Carbohyd Res. 1999 Nov 23;322(1–2):32–39. doi:10.1016/S0008-6215(99)00206-2.
  • Shang Q, Shan X, Cai C, Hao J, Li G, Yu G. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct. 2016 Jul 13;7(7):3224–3232. PubMed PMID: 27334000. doi:10.1039/c6fo00309e.
  • Shang QS, Song GR, Zhang MF, Shi J, Xu C, Hao J, Li G, Yu G. Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. J Funct Foods. 2017 Jan;28:138–146. PubMed PMID: WOS:000392885000017. doi:10.1016/j.jff.2016.11.002.
  • Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol. 2006 May;72(5):3593–3599. PubMed PMID: 16672507; PubMed Central PMCID: PMC1472403. doi:10.1128/AEM.72.5.3593-3599.2006.
  • Sato T, Matsumoto K, Okumura T, Yokoi W, Naito E, Yoshida Y, Nomoto K, Ito M, Sawada H. Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of Anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model. FEMS Microbiol Ecol. 2008 Dec;66(3):528–536. PubMed PMID: WOS:000261060600006; English. doi:10.1111/j.1574-6941.2008.00528.x.
  • Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA): acetate-CoAtransferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol. 2002 Oct;68(10):5186–5190. PubMed PMID: 12324374; PubMed Central PMCID: PMC126392.
  • Duncan SH, Hold GL, Harmsen HJ, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002 Nov;52(Pt6)):2141–2146. PubMed PMID: 12508881. doi:10.1099/00207713-52-6-2141.
  • Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol. 2000 Apr;66(4):1654–1661. PubMed PMID: 10742256; PubMed Central PMCID: PMC92037.
  • Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol. 2004 Apr;186(7):2099–2106. PubMed PMID: 15028695; PubMed Central PMCID: PMC374397.
  • Collado MC, Derrien M, Isolauri E. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol. 2007 Dec;73(23):7767–7770. PubMed PMID: WOS:000251474400038; English. doi:10.1128/Aem.01477-07.
  • Ottman N, Davids M, Suarez-Diez M, Boeren S, Schaap PJ, Martins Dos Santos VAP, Smidt H, Belzer C, de Vos WM. Genome-scale model and omics analysis of metabolic capacities of akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl Environ Microbiol. 2017 Sep 15;83(18). PubMed PMID: 28687644; PubMed Central PMCID: PMC5583483. doi: 10.1128/AEM.01014-17.
  • Magnusdottir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, Greenhalgh K, Jäger C, Baginska J, Wilmes P, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol. 2017 Jan;35(1):81–89. PubMed PMID: 27893703. doi:10.1038/nbt.3703.
  • van der Ark KCH, Aalvink S, Suarez-Diez M, Schaap PJ, de Vos WM, Belzer C. Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation. Microb Biotechnol. 2018 May;11(3):476–485. PubMed PMID: 29377524; PubMed Central PMCID: PMC5902328. doi:10.1111/1751-7915.13033.
  • Neyrinck AM, Bindels LB, De Backer F, Pachikian BD, Cani PD, Delzenne NM. Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet-induced obese mice, a phenomenon linked to its lipid-lowering action. Int Immunopharmacol. 2009 Jun;9(6):767–773. PubMed PMID: WOS:000266568800019; English. doi:10.1016/j.intimp.2009.02.015.
  • WHO. The global prevalence of anaemia in 2011. Geneva (Switzerland): World Health Organization; 2015.
  • Jaeggi T, Kortman GAM, Moretti D, Chassard C, Holding P, Dostal A, Boekhorst J, Timmerman HM, Swinkels DW, Tjalsma H, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015 May;64(5):731–742. PubMed PMID: 25143342. doi:10.1136/gutjnl-2014-307720.
  • Kortman GA, Dutilh BE, Maathuis AJ, Engelke UF, Boekhorst J, Keegan KP, Nielsen FG, Betley J, Weir JC, Kingsbury Z, et al. Microbial metabolism shifts towards an adverse profile with supplementary iron in the TIM-2 in vitro model of the human colon. Front Microbiol. 2015;6:1481. PubMed PMID: 26779139; PubMed Central PMCID: PMC4701948. doi:10.3389/fmicb.2015.01481.
  • Paganini D, Zimmermann MB. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: a review. Am J Clin Nutr. 2017 Dec;106(Suppl 6):1688S–1693S. PubMed PMID: 29070552; PubMed Central PMCID: PMC5701709. doi:10.3945/ajcn.117.156067.
  • Dostal A, Lacroix C, Bircher L, Pham VT, Follador R, Zimmermann MB, Chassard C. Iron modulates butyrate production by a child gut microbiota in vitro. mBio. 2015 Nov 17;6(6):e01453–15. PubMed PMID: 26578675; PubMed Central PMCID: PMC4659462. doi:10.1128/mBio.01453-15.
  • Paganini D, Uyoga MA, Kortman GAM, Cercamondi CI, Moretti D, Barth-Jaeggi T, Schwab C, Boekhorst J, Timmerman HM, Lacroix C, et al. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants. Gut. 2017 Nov;66(11):1956–1967. PubMed PMID: 28774885. doi:10.1136/gutjnl-2017-314418.
  • De-Regil LM, Suchdev PS, Vist GE, Walleser S, Peña-Rosas JP. Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age (Review). Evidence-Based Child Health: A Cochrane RevJ. 2013 Jan;8(1):112–201. PubMed PMID: 23878126. doi:10.1002/ebch.1895.
  • WHO. WHO guideline: use of multiple micronutrient powders for point-of-use fortification of foods consumed by infants and young children aged 6–23 months and children aged 2–12 years. English. Geneva (Switzerland): Licence: CC BY-NC-SA 3.0 IGO. ed; 2016.
  • Yu T, Zhu C, Chen S, Gao L, Lv H, Feng R, Zhu Q, Xu J, Chen Z, Jiang Z. Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets. Front Microbiol. 2017;8:825. PubMed PMID: 28536569; PubMed Central PMCID: PMC5422713. doi:10.3389/fmicb.2017.00825.
  • U KM U, Fatima S. Role of zinc in shaping the gut microbiome; proposed mechanisms and evidence from the literature. J Gastrointest Dig Syst. 2018;8(1):548. doi:10.4172/2161-069X.1000548.
  • Krumbeck JA, Walter J, Hutkins RW. Synbiotics for improved human health: recent developments, challenges, and opportunities. Annu Rev Food Sci Technol. 2018 Mar 25;9:451–479. PubMed PMID: 29350558. doi:10.1146/annurev-food-030117-012757.