6,236
Views
56
CrossRef citations to date
0
Altmetric
Review

Exposure to air pollutants and the gut microbiota: a potential link between exposure, obesity, and type 2 diabetes

, , , ORCID Icon & ORCID Icon
Pages 1188-1202 | Received 10 Dec 2019, Accepted 25 Mar 2020, Published online: 29 Apr 2020

References

  • World Health Organization. Obesity and overweight. 2019. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight..
  • Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015 Jul;33(7):673–689. doi:https://doi.org/10.1007/s40273-014-0243-x.
  • Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011 Dec;94(3):311–321. doi:https://doi.org/10.1016/j.diabres.2011.10.029.
  • Centers for Disease Control and Prevention (CDC). National Diabetes Statistics Report, 2017. 2017 Jul 19:1–20.
  • Ali O. Genetics of type 2 diabetes. World J Diabetes. 2013 Aug;4(4):114–123. doi:https://doi.org/10.4239/wjd.v4.i4.114.
  • Sung B, Etemadifar A. Multilevel analysis of socio-demographic disparities in adulthood obesity across the United States geographic regions. Osong Public Health Res Perspect. 2019 Jun;10(3):137–144. doi:https://doi.org/10.24171/j.phrp.2019.10.3.04.
  • Jerrett M, McConnell R, Chang CCR, Wolch J, Reynolds K, Lurmann F, Gilliland F, Berhane K. Automobile traffic around the home and attained body mass index: A longitudinal cohort study of children aged 10–18 years. Prev Med. 2010 Jan;50(Suppl 1):S50–8. doi:https://doi.org/10.1016/j.ypmed.2009.09.026.
  • McConnell R, Shen E, Gilliland FD, Jerrett M, Wolch J, Chang -C-C, Lurmann F, Berhane K. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: the Southern California children’s health study. Environmental Health Perspectives. 2015 Apr;123(4):360–366. doi:https://doi.org/10.1289/ehp.1307031.
  • Yang B-Y, Qian Z, Li S, Chen G, Bloom MS, Elliott M, Syberg KW, Heinrich J, Markevych I, Wang S-Q, et al. Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China: a cross-sectional study with findings from the 33 communities chinese health study. Lancet Planet Health. 2018 Feb;2(2):e64–e73. doi:https://doi.org/10.1016/S2542-5196(18)30001-9.
  • Lucht SA, Hennig F, Matthiessen C, Ohlwein S, Icks A, Moebus S, Jöckel KH, Jakobs H, Hoffmann B. Air pollution and glucose metabolism: an analysis in non-diabetic participants of the heinz nixdorf recall study. Environ Health Perspect. 2018 Apr;126(4):047001. doi:https://doi.org/10.1289/EHP2561.
  • Alderete TL, Habre R, Toledo-Corral CM, Berhane K, Chen Z, Lurmann FW, Weigensberg MJ, Goran MI, Gilliland FD. Longitudinal associations between ambient air pollution with insulin sensitivity, β-cell function, and adiposity in Los Angeles Latino children. Diabetes. 2017Jul;66(7):1789–1796. doi:https://doi.org/10.2337/db16-1416.
  • Chen Z, Salam MT, Toledo-Corral C, Watanabe RM, Xiang AH, Buchanan TA, Habre R, Bastain TM, Lurmann F, Wilson JP, et al. Ambient air pollutants have adverse effects on insulin and glucose homeostasis in Mexican Americans. Diabetes Care. 2016 Apr;39(4):547–554. doi:https://doi.org/10.2337/dc15-1795.
  • Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z. The 2016 global and national burden of diabetes mellitus attributable to PM2.5 air pollution. Lancet Planet Health. 2018 Jun;2(7):e301–12. doi:https://doi.org/10.1016/S2542-5196(18)30140-2.
  • Wei Y, Zhang JJ, Li Z, Gow A, Chung KF, Hu M, Sun Z, Zeng L, Zhu T, Jia G, et al. Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. Faseb J. 2016 Jun;30(6):2115–2122. doi:https://doi.org/10.1096/fj.201500142.
  • Liu C, Xu X, Bai Y, Wang TY, Rao X, Wang A, Sun L, Ying Z, Gushchina L, Maiseyeu A, Morishita M, Sun Q, Harkema JR, Rajagopalan S. Air pollution–mediated susceptibility to inflammation and insulin resistance: influence of CCR2 pathways in mice. Environ Health Perspect. 2014 Jan;122(1):17–26.
  • Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, Cai Y, Ostrowski MC, Lu B, Parthasarathy S, Brook RD, Moffatt-Bruce SD, Chen LC, Rajagopalan S. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation. 2009. Feb;119(4):538–546.
  • Irigaray P, Ogier V, Jacquenet S, Notet V, Sibille P, Mejean L, Bihain BE, Yen FT. Benzo[a]pyrene impairs beta-adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice. A novel molecular mechanism of toxicity for a common food pollutant. Febs J. 2006 Apr;273(7):1362–1372. doi:https://doi.org/10.1111/j.1742-4658.2006.05159.x.
  • Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights. Diabetes. 2012 Dec;61(12):3037–3045. doi:https://doi.org/10.2337/db12-0190.
  • Kish L, Hotte N, Kaplan GG, Vincent R, Tso R, Gänzle M, Rioux KP, Thiesen A, Barkema HW, Wine E, et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One. 2013;8(4):e62220. doi:https://doi.org/10.1371/journal.pone.0062220.
  • Li R, Yang J, Saffari A, Jacobs J, Baek KI, Hough G, Larauche MH, Ma J, Jen N, Moussaoui N et al. Ambient ultrafine particle ingestion alters gut microbiota in association with increased atherogenic lipid metabolites. Sci Rep. 2017 Feb;7(1):42906. doi:https://doi.org/10.1038/srep42906.
  • Ribière C, Peyret P, Parisot N, Darcha C, Déchelotte PJ, Barnich N, Peyretaillade E, Boucher D. Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Sci Rep. 2016 Aug;6(1):31027. doi:https://doi.org/10.1038/srep31027.
  • Mutlu EA, Comba IY, Cho T, Engen PA, Yazıcı C, Soberanes S, Hamanaka RB, Niğdelioğlu R, Meliton AY, Ghio AJ, et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut. 2018 Sep;240:817–830. doi:https://doi.org/10.1016/j.envpol.2018.04.130.
  • Wang W, Zhou J, Chen M, Huang X, Xie X, Li W, Cao Q, Kan H, Xu Y, Ying Z. Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model. Part Fibre Toxicol, 2018 Apr;15(1):17. doi:https://doi.org/10.1186/s12989-018-0252-6.
  • Alderete TL, Jones RB, Chen Z, Kim JS, Habre R, Lurmann F, Gilliland FD, Goran MI. Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents. Environ Res. 2018 Feb;161:472–478. doi:https://doi.org/10.1016/j.envres.2017.11.046.
  • Liu T, Chen X, Xu Y, Wu W, Tang W, Chen Z, Ji G, Peng J, Jiang Q, Xiao J, et al. Gut microbiota partially mediates the effects of fine particulate matter on type 2 diabetes: evidence from a population-based epidemiological study. Environ Int. 2019 Jun;130:104882. doi:https://doi.org/10.1016/j.envint.2019.05.076.
  • Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, Mujagic Z, Masclee AAM, Jonkers DMAE, Oosting M, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019 Apr;51(4):600–605. doi:https://doi.org/10.1038/s41588-019-0350-x.
  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012 Jun;336(6086):1262–1267. doi:https://doi.org/10.1126/science.1223813.
  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012 Jul;3(4):289–306. doi:https://doi.org/10.4161/gmic.19897.
  • Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev. 1997 Mar;6(Suppl 1):S43–5. doi:https://doi.org/10.1097/00008469-199703001-00009.
  • Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes. 2014 Mar;5(1):3–17. doi:https://doi.org/10.3920/BM2012.0065.
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006 Dec;444(7122):1027–1031. doi:https://doi.org/10.1038/nature05414.
  • Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014 Nov;588(22):4223–4233. doi:https://doi.org/10.1016/j.febslet.2014.09.039.
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006 Dec;444(7122):1022–1023. doi:https://doi.org/10.1038/4441022a.
  • Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM, Dallinga–Thie GM, Ackermans MT, Serlie MJ, Oozeer R, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012 Oct;143(4):913–917. doi:https://doi.org/10.1053/j.gastro.2012.06.031.
  • Ross MC, Muzny DM, McCormick JB, Gibbs RA, Fisher-Hoch SP, Petrosino JF. 16S gut community of the cameron county hispanic cohort. Microbiome. 2015 Mar;3:7. doi:https://doi.org/10.1186/s40168-015-0072-y.
  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012 Oct;490(7418):55–60. doi:https://doi.org/10.1038/nature11450.
  • Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014 Oct;514(7521):181–6. doi:https://doi.org/10.1038/nature13793.
  • Plöger S, Stumpff F, Penner GB, Schulzke J-D, Gäbel G, Martens H, Shen Z, Günzel D, Aschenbach JR. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci. 2012 Jul;1258(1):52–59. doi:https://doi.org/10.1111/j.1749-6632.2012.06553.x.
  • Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J-D, Serino M, Tilg H, Watson A, Wells JM. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 2014 Nov;14(1):189. doi:https://doi.org/10.1186/s12876-014-0189-7.
  • Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011 May;141(5):769–776. doi:https://doi.org/10.3945/jn.110.135657.
  • Amar J, Lange C, Payros G, Garret C, Chabo C, Lantieri O, Courtney M, Marre M, Charles MA, Balkau B, et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS ONE. 2013;8(1):e54461. doi:https://doi.org/10.1371/journal.pone.0054461.
  • Païssé S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, Lelouvier B. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion. 2016 May;56(5):1138–1147. doi:https://doi.org/10.1111/trf.13477.
  • Virtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, Joannas L, Basavappa MG, Spencer SP, Clark ML et al. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci Transl Med. 2019 Jun;11(496):eaav1892. doi:https://doi.org/10.1126/scitranslmed.aav1892.
  • Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes. 2014 Mar;5(2):215–219. doi:https://doi.org/10.4161/gmic.27251.
  • Möller W, Häussinger K, Winkler-Heil R, Stahlhofen W, Meyer T, Hofmann W, Heyder J. Mucociliary and long-term particle clearance in the airways of healthy nonsmoker subjects. J Appl Physiol. 2004 Dec;97(6):2200–2206. doi:https://doi.org/10.1152/japplphysiol.00970.2003.
  • Oberdörster G. Lung dosimetry: pulmonary clearance of inhaled particles. Aerosol Sci Technol. 1993;18(3):279–289. doi:https://doi.org/10.1080/02786829308959605.
  • Stuart BO. Deposition and clearance of inhaled particles.. Environ Health Perspect. 1984 Apr;55:369–390. doi:https://doi.org/10.1289/ehp.8455369.
  • Kreyling WG, Blanchard JD, Godleski JJ, Haeussermann S, Heyder J, Hutzler P, Schulz H, Sweeney TD, Takenaka S, Ziesenis A, et al. Anatomic localization of 24- and 96-h particle retention in canine airways. J Appl Physiol. 1999 Jul;87(1):269–284. doi:https://doi.org/10.1152/jappl.1999.87.1.269.
  • Thomas J, Guénette J, Thomson EM. Stress axis variability is associated with differential ozone-induced lung inflammatory signaling and injury biomarker response. Environ Res. 2018 Nov;167:751–758. doi:https://doi.org/10.1016/j.envres.2018.09.007.
  • Thomson EM, Vladisavljevic D, Mohottalage S, Kumarathasan P, Vincent R. Mapping acute systemic effects of inhaled particulate matter and ozone: multiorgan gene expression and glucocorticoid activity. Toxicol Sci. 2013 Jun;135(1):169–181. doi:https://doi.org/10.1093/toxsci/kft137.
  • Van de Wiele T, Vanhaecke L, Boeckaert C, Peru K, Headley J, Verstraete W, Siciliano S. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect. 2005 Jan;113(1):6–10. doi:https://doi.org/10.1289/ehp.7259.
  • Pinyayev TS, Kohan MJ, Herbin-Davis K, Creed JT, Thomas DJ. Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals. Chem Res Toxicol. 2011 Apr;24(4):475–477. doi:https://doi.org/10.1021/tx200040w.
  • Peters A, Perz S, Döring A, Stieber J, Koenig W, Wichmann HE. Increases in heart rate during an air pollution episode. Am J Epidemiol. 1999 Nov;150(10):1094–1098. doi:https://doi.org/10.1093/oxfordjournals.aje.a009934.
  • Ibald-Mulli A, Stieber J, Wichmann HE, Koenig W, Peters A. Effects of air pollution on blood pressure: a population-based approach. Am J Public Health. 2001 Apr;91(4):571–577. doi:https://doi.org/10.2105/ajph.91.4.571.
  • Kaplan GG, Hubbard J, Korzenik J, Sands BE, Panaccione R, Ghosh S, Wheeler AJ, Villeneuve PJ. The inflammatory bowel diseases and ambient air pollution: a novel association. Am J Gastroenterol. 2010 Nov;105(11):2412–2419. doi:https://doi.org/10.1038/ajg.2010.252.
  • Ananthakrishnan AN, McGinley EL, Binion DG, Saeian K. Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. Inflamm Bowel Dis. 2011 May;17(5):1138–1145. doi:https://doi.org/10.1002/ibd.21455.
  • Kaplan GG, Szyszkowicz M, Fichna J, Rowe BH, Porada E, Vincent R, Madsen K, Ghosh S, Storr M. Non-specific abdominal pain and air pollution: a novel association. PLoS ONE. 2012 Oct;7(10):e47669. doi:https://doi.org/10.1371/journal.pone.0047669.
  • Kaplan GG, Dixon E, Panaccione R, Fong A, Chen L, Szyszkowicz M, Wheeler A, MacLean A, Buie WD, Leung T et al. Effect of ambient air pollution on the incidence of appendicitis. Can Med Assoc J. 2009 Oct;181(9):591–597. doi:https://doi.org/10.1503/cmaj.082068.
  • Kaplan GG, Tanyingoh D, Dixon E, Johnson M, Wheeler AJ, Myers RP, Bertazzon S, Saini V, Madsen K, Ghosh S, et al. Ambient ozone concentrations and the risk of perforated and nonperforated appendicitis: a multicity case-crossover study. Environ Health Perspect. 2013 Aug;121(8):939–943. doi:https://doi.org/10.1289/ehp.1206085.
  • Orazzo F, Nespoli L, Ito K, Tassinari D, Giardina D, Funis M, Cecchi A, Trapani C, Forgeschi G, Vignini M, et al. Air pollution, aeroallergens, and emergency room visits for acute respiratory diseases and gastroenteric disorders among young children in six Italian cities. Environ Health Perspectives. 2009 Nov;117(11):1780–1785. doi:https://doi.org/10.1289/ehp.0900599.
  • Harris JE Cigarette smoke components and disease: cigarette smoke is more than a triad of tar, nicotine, and carbon monoxide. In: National Cancer Institute. The FTC cigarette test method for determining tar, nicotine, and carbon monoxide yields of US cigarettes: report of the NCI Expert Committee. Bethesda, Maryland: National Institutes of Health, 1996. (NIH Publication No 96-4028.)
  • Biedermann L, Zeitz J, Mwinyi J, Sutter-Minder E, Rehman A, Ott SJ, Steurer-Stey C, Frei A, Frei P, Scharl M, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One. 2013;8(3):e59260. doi:https://doi.org/10.1371/journal.pone.0059260.
  • Benjamin JL, Hedin CRH, Koutsoumpas A, Ng SC, McCarthy NE, Prescott NJ, Pessoa-Lopes P, Mathew CG, Sanderson J, Hart AL, et al. Smokers with active Crohnʼs disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflammatory Bowel Dis. 2012 Jun;18(6):1092–1100. doi:https://doi.org/10.1002/ibd.21864.
  • Stewart CJ, Auchtung TA, Ajami NJ, Velasquez K, Smith DP, De La Garza R, Salas R, Petrosino JF. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study. PeerJ. 2018 Apr;6:e4693. doi:https://doi.org/10.7717/peerj.4693.
  • Allais L, Kerckhof F-M, Verschuere S, Bracke KR, De Smet R, Laukens D, Van den Abbeele P, De Vos M, Boon N, Brusselle GG, et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol. 2016 May;18(5):1352–1363. doi:https://doi.org/10.1111/1462-2920.12934.
  • Kim M, Gu B, Madison MC, Song HW, Norwood K, Hill AA, Wu W-J, Corry D, Kheradmand F, Diehl GE, et al. Cigarette smoke induces intestinal inflammation via a Th17 cell-neutrophil axis. Front Immunol. 2019 Jan;10:75. doi:https://doi.org/10.3389/fimmu.2019.00075.
  • Beamish LA, Osornio-Vargas AR, Wine E. Air pollution: an environmental factor contributing to intestinal disease. J Crohns Colitis. 2011 Aug;5(4):279–286. doi:https://doi.org/10.1016/j.crohns.2011.02.017.
  • Scientific Committee on Food (SCF). Opinion of the scientific committee on food on the risks to human health of polycyclic aromatic hydrocarbons in food. Brussels: Scientific Committee on Food; 2002.
  • De Brouwere K, Buekers J, Cornelis C, Schlekat CE, Oller AR. Assessment of indirect human exposure to environmental sources of nickel: oral exposure and risk characterization for systemic effects. Sci Total Environ. 2012 Mar;419(419):25–36. doi:https://doi.org/10.1016/j.scitotenv.2011.12.049.
  • Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008 Jan;151(2):362–367. doi:https://doi.org/10.1016/j.envpol.2007.06.012.
  • Lomer MCE, Hutchinson C, Volkert S, Greenfield SM, Catterall A, Thompson RPH, Powell JJ. Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br J Nutr. 2004 Dec;92(6):947–955. doi:https://doi.org/10.1079/BJN20041276.
  • Lomer MCE, Thompson RPH, Powell JJ. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc. 2002 Feb;61(1):123–130. doi:https://doi.org/10.1079/PNS2001134.
  • Mutlu EA, Engen PA, Soberanes S, Urich D, Forsyth CB, Nigdelioglu R, Chiarella SE, Radigan KA, Gonzalez A, Jakate S, et al. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol. 2011 Jun;8:19. doi:https://doi.org/10.1186/1743-8977-8-19.
  • Adams K, Greenbaum DS, Shaikh R, van Erp AM, Russell AG. Particulate matter components, sources, and health: systematic approaches to testing effects. Journal of the Air. 2015 May;65(5):544–558. doi:https://doi.org/10.1080/10962247.2014.1001884.
  • Li X, Brejnrod AD, Ernst M, Rykær M, Herschend J, Olsen NMC, Dorrestein PC, Rensing C, Sørensen SJ. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environ Int. 2019 May;126:454–467. doi:https://doi.org/10.1016/j.envint.2019.02.048.
  • Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 2017 Apr;30(4):996–1005. doi:https://doi.org/10.1021/acs.chemrestox.6b00401.
  • Hussey SJK, Purves J, Allcock N, Fernandes VE, Monks PS, Ketley JM, Andrew PW, Morrissey JA. Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation. Environ Microbiol. 2017 May;19(5):1868–1880. doi:https://doi.org/10.1111/1462-2920.13686.
  • Yasuyuki M, Kunihiro K, Kurissery S, Kanavillil N, Sato Y, Kikuchi Y. Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling. 2010 Oct;26(7):851–858. doi:https://doi.org/10.1080/08927014.2010.527000.
  • Roslund MI, Rantala S, Oikarinen S, Puhakka R, Hui N, Parajuli A, Laitinen OH, Hyöty H, Rantalainen A-L, Sinkkonen A, et al. Endocrine disruption and commensal bacteria alteration associated with gaseous and soil PAH contamination among daycare children. Environ Int. 2019 Jun;130(130):104894. doi:https://doi.org/10.1016/j.envint.2019.06.004.
  • U.S. EPA. Integrated science assessment (ISA) of ozone and related photochemical oxidants. Washington (DC): U.S. Environmental Protection Agency; 2013. Final Report, Feb 2013. EPA/600/R-10/076F.
  • Petrosus E, Silva EB, Lay D, Eicher SD. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage. J Anim Sci. 2018 Nov;96(11):4543–4551. doi:https://doi.org/10.1093/jas/sky312.
  • Lyte M. Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Biol. 2014;817:3–24. doi:https://doi.org/10.1007/978-1-4939-0897-4_1.
  • Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci. 1992;50(3):203–212. doi:https://doi.org/10.1016/0024-3205(92)90273-r.
  • Morgan XC, Huttenhower C, Lewitter F, Kann M. Chapter 12: human microbiome analysis. Lewitter F, Kann M, editors. PLoS Comp Biol. 2012;8(12):e1002808. doi:https://doi.org/10.1371/journal.pcbi.1002808.
  • Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, Ter Horst R, Jansen T, Jacobs L, Bonder MJ et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016 Nov;167(4):1125–1128. doi:https://doi.org/10.1016/j.cell.2016.10.020.
  • Swaroop JJ, Naidu JN, Rajarajeswari D. Association of TNF-α with insulin resistance in type 2 diabetes mellitus. Indian J Med Res. 2012;135(1):127–130. doi:https://doi.org/10.4103/0971-5916.93435.
  • Aguirre M, Venema K. Does the gut microbiota contribute to obesity? going beyond the gut feeling. Microorganisms. 2015 Apr;3(2):213–235. doi:https://doi.org/10.3390/microorganisms3020213.
  • Moon Y-S, Kim D-H, Song D-K. Serum tumor necrosis factor-α levels and components of the metabolic syndrome in obese adolescents. Metabolism. 2004 Jul;53(7):863–867. doi:https://doi.org/10.1016/j.metabol.2004.02.007.
  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Nat Acad Sci. 2005 Aug;102(31):11070–11075. doi:https://doi.org/10.1073/pnas.0504978102.
  • Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech. 2015 Jan;8(1):1–16. doi:https://doi.org/10.1242/dmm.017400.
  • Taylor AA, Marcus IM, Guysi RL, Walker SL. Metal oxide nanoparticles induce minimal phenotypic changes in a model colon gut microbiota. Environ Eng Sci. 2015 Jul;32(7):602–612. doi:https://doi.org/10.1089/ees.2014.0518.
  • Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 2007 Feb;96(2):203–209. doi:https://doi.org/10.1002/bit.21301.
  • Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, Berry D. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in F irmicutes populations. Environ Microbiol. 2017 Jan;19(1):95–105. doi:https://doi.org/10.1111/1462-2920.13463.
  • Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M, SPRING Trial Group. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes. 2016 Aug;65(8):2214–2223. doi:https://doi.org/10.2337/db16-0278.
  • Shah SNA, Shah Z, Hussain M, Khan M. Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorg Chem Appl. 2017;2017:4101735. doi:https://doi.org/10.1155/2017/4101735.
  • Dahle J, Arai Y. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health. 2015 Feb;12(2):1253–1278. doi:https://doi.org/10.3390/ijerph120201253.
  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015 Apr;7(3):219–242. doi: https://doi.org/10.1007/s40820-015-0040-x.
  • Truffier-Boutry D, Fiorentino B, Bartolomei V, Soulas R, Sicardy O, Benayad A,  Damlencourt J-F, Pépin-Donat B, Lombard C, Gandolfo A, Wortham H, Brochard G, Audemard A, Porcar L, Gebela G, Gligorovski S. Characterization of photocatalytic paints: a relationship between the photocatalytic properties – release of nanoparticles and volatile organic compounds. Environ Sci Nano. 2017;4(10):1998–2009. https://doi.org/10.1039/C7EN00467B
  • É Nerriere, Zmirou-Navier D, Blanchard O, Momas I, Ladner J, Le Moullec Y, Personnaz M-B, Lameloise P, Delmas V, Target A, Desqueyrouxj H. Can we use fixed ambient air monitors to estimate population long-term exposure to air pollutants? The case of spatial variability in the Genotox ER study. Environ Res. 2005 Jan;97(1):32–42. doi:https://doi.org/10.1016/j.envres.2004.07.009.
  • Duca FA, Sakar Y, Lepage P, Devime F, Langelier B, Doré J, Covasa M. Replication of obesity and associated signaling pathways through transfer of microbiota from obese-prone rats. Diabetes. 2014 May;63(5):1624–1636. doi:https://doi.org/10.2337/db13-1526.
  • Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013 Sep;341(6150):1241214. doi:https://doi.org/10.1126/science.1241214.
  • Zierer J, Jackson MA, Kastenmüller G, Mangino M, Long T, Telenti A, Mohney RP, Small KS, Bell JT, Steves CJ, et al. The fecal metabolome as a functional readout of the gut microbiome. Nat Genet. 2018 Jun;50(6):790–795. doi:https://doi.org/10.1038/s41588-018-0135-7.
  • Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017 Jun 1;474(11):1823–1836. doi:https://doi.org/10.1042/BCJ20160510.
  • Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JAM, Brandsma E, Marczynska J, Imhann F, Weersma RK et al. The Gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circulation Research. 2015 Oct;117(9):817–824. doi:https://doi.org/10.1161/CIRCRESAHA.115.306807.
  • Ma N, Dietary Amino MX. Acids and the gut‐microbiome‐immune axis: physiological metabolism and therapeutic prospects. Compr Rev Food Sci Food Saf. 2018 Dec;18(1):221–242. doi:https://doi.org/10.1111/1541-4337.12401.
  • She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1552–63. doi:https://doi.org/10.1152/ajpendo.00134.2007.
  • Butte NF, Liu Y, Zakeri IF, Mohney RP, Mehta N, Voruganti VS, Göring H, Cole SA, Comuzzie AG. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am J Clin Nutr. 2015 Aug;102(2):256–267. doi:https://doi.org/10.3945/ajcn.115.111872.
  • McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, Clish CB, Mootha VK, Grinspoon SK, Fleischman A, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes. 2013 Feb;8(1):52–61. doi:https://doi.org/10.1111/j.2047-6310.2012.00087.x.
  • Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009 Sep;10(3):167–177. doi:https://doi.org/10.1016/j.cmet.2009.08.001.
  • Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gérard P, Maguin E, Rhimi M. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res. 2019 Feb, 60(2), 323–332. DOI: https://doi.org/10.1194/jlr.R088989
  • Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013 Aug;39(2):372–385. doi:https://doi.org/10.1016/j.immuni.2013.08.003.
  • Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006 Mar;116(3):561–570. doi:https://doi.org/10.1172/JCI27987.
  • Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids. 2014 Nov;90:13–29. doi:https://doi.org/10.1016/j.steroids.2014.06.012.
  • Nicolucci AC, Hume MP, Martínez I, Mayengbam S, Walter J, Reimer RA. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology. 2017 Sep;153(3):711–722. doi:https://doi.org/10.1053/j.gastro.2017.05.055.
  • Grazul H, Kanda LL, Gondek D. Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes. 2016;7(2):101–114. doi:https://doi.org/10.1080/19490976.2016.1138197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.