5,663
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing Clostridioides difficile

, , , , , , , , , , , , , , , , , , & show all
Article: 1973835 | Received 20 Nov 2020, Accepted 19 Aug 2021, Published online: 23 Sep 2021

References

  • Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD, Finn RDal. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753):499–18. doi:10.1038/s41586-019-0965-1.
  • Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–340. doi:10.1016/j.cell.2016.01.013.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821.
  • Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. doi:10.1038/nrgastro.2017.75.
  • Mao B, Li D, Ai C, Zhao J, Zhang H, Chen W. Lactulose differently modulates the composition of luminal and mucosal microbiota in C57BL/6J mice. J Agric Food Chem. 2016;64(31):6240–6247. doi:10.1021/acs.jafc.6b02305.
  • Mao B, Tang H, Gu J, Li D, Cui S, Zhao J,Hao Z, Wei C . In vitro fermentation of raffinose by the human gut bacteria. Food Funct. 2018;9(11):5824–5831. doi:10.1039/C8FO01687A.
  • Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, Kolde R, Vlamakis H, Arthur T, Hämäläinen A-M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165(4):842–853. doi:10.1016/j.cell.2016.04.007.
  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–53 e21. doi:10.1016/j.cell.2016.10.043.
  • Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–1208. doi:10.1056/NEJMoa1306801.
  • McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Ciaran Kelly, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66:e1–e48.
  • Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis. 2015;2(1):ofv004. doi:10.1093/ofid/ofv004.
  • DeFilipp Z, Bloom PP, Torres Soto M, Mansour MK, Sater MRA, Huntley MH, Turbett S, Chung RT, Chen Y-B, Hohmann EL, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019;381(21):2043–2050. doi:10.1056/NEJMoa1910437.
  • Yoshida K, Hirano R, Sakai Y, Choi M, Sakanaka M, Kurihara S, Iino H, Xiao J-Z, Katayama T, Odamaki T, et al. Bifidobacterium response to lactulose ingestion in the gut relies on a solute-binding protein-dependent ABC transporter. Commun Biol. 2021;4(1):541. doi:10.1038/s42003-021-02072-7.
  • Katoh T, Ojima MN, Sakanaka M, Ashida H, Gotoh A, Katayama T. Enzymatic adaptation of bifidobacterium bifidum to host glycans, viewed from glycoside hydrolyases and carbohydrate-binding modules. Microorganisms. 2020;8(4):481.
  • Gotoh A, Nara M, Sugiyama Y, Sakanaka M, Yachi H, Kitakata A, Nakagawa A, Minami H, Okuda S, Katoh T, et al. Use of Gifu Anaerobic Medium for culturing 32 dominant species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles. Biosci Biotechnol Biochem. 2017;81(10):1–9. doi:10.1080/09168451.2017.1359486.
  • Nakajima M, Nishimoto M, Kitaoka M. Characterization of Three b-galactoside β-Galactoside Phosphorylases from Clostridium phytofermentans: discovery of d-galactosyl-beta1->4-l-rhamnose phosphorylase. J Biol Chem. 2009;284(29):19220–19227. doi:10.1074/jbc.M109.007666.
  • Nakajima M, Nishimoto M, Kitaoka M. Practical preparation of D-galactosyl-beta1–>4-L-rhamnose D-Galactosyl-β1→4-L-rhamnose employing the combined action of phosphorylases. Biosci Biotechnol Biochem. 2010;74(8):1652–1655. doi:10.1271/bbb.100263.
  • Nishimoto M, Kitaoka M. Practical preparation of Lacto-N-biose Lacto-N-biose I, a candidate for the bifidus factor in human milk. Biosci Biotechnol Biochem. 2007;71(8):2101–2104. doi:10.1271/bbb.70320.
  • Nishimoto M, Kitaoka M. One-pot enzymatic production of beta-D-galactopyranosyl-(1–>3)-2-acetamido-2-deoxy-D-galactose (galacto-N-biose) from sucrose and 2-acetamido-2-deoxy-D-galactose (N-acetylgalactosamine). Carbohydr Res. 2009;344(18):2573–2576. doi:10.1016/j.carres.2009.09.031.
  • Matsumura H, Takeuchi A, Kano Y. Construction of Escherichia coli-Bifidobacterium coli–Bifidobacterium longum Shuttle Vector Transforming B. longum 105-A and 108-A. Biosci Biotechnol Biochem. 1997;61(7):1211–1212. doi:10.1271/bbb.61.1211.
  • Hirayama Y, Sakanaka M, Fukuma H, Murayama H, Kano Y, Fukiya S, Yokota A. Development of a double-crossover markerless gene deletion system in Bifidobacterium longum: functional analysis of the alpha-galactosidase gene for raffinose assimilation. Appl Environ Microbiol. 2012;78(14):4984–4994. doi:10.1128/AEM.00588-12.
  • Parche S, Amon J, Jankovic I, Rezzonico E, Beleut M, Barutcu H,  Schendel I, Eddy MP, Burkovski A,  Arigoni F, et al. Sugar transport systems of Bifidobacterium longum NCC2705. J Mol Microbiol BiotechnolJournal of Molecular Microbiology and Biotechnology. 2007;12(1–2):9–19. doi:10.1159/000096455.
  • Bottacini F, Ventura M, van Sinderen D, O’Connell Motherway M. Diversity, ecology and intestinal function of bifidobacteria. Microb Cell Fact. 2014;13(Suppl 1):S4. doi:10.1186/1475-2859-13-S1-S4.
  • Choi JH, Lee KM, Lee MK, Cha CJ, Kim GB. Bifidobacterium faecale sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2014;64(Pt_9):3134–3139. doi:10.1099/ijs.0.063479-0.
  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinform. 2009;10(1):421. doi:10.1186/1471-2105-10-421.
  • Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, White RC, Clarke TH, Nguyen K, Torralba M, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature. 2019;575(7783):505–511. doi:10.1038/s41586-019-1742-x.
  • Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature. 2018;557(7705):434–438. doi:10.1038/s41586-018-0092-4.
  • Theilmann MC, Fredslund F, Svensson B, Lo Leggio L, Abou Hachem M. Substrate preference of an ABC importer corresponds to selective growth on beta-(1,6)-galactosides in Bifidobacterium animalis subsp. lactis. J Biol Chem. 2019;294(31):11701–11711. doi:10.1074/jbc.RA119.008843.
  • Schols HA, Visser R, Voragen A. Pectins and pectinases. 2009.
  • Polle AY, O RG, Shashkov AS, Ovodov YS. Some structural features of pectic polysaccharide from tansy, Tanacetum vulgare L. Carbohydr Polym. 2002;49(3):337–344. doi:10.1016/S0144-8617(01)00346-0.
  • Crociani F, Alessandrini A, Mucci MM, Biavati B. Degradation of complex carbohydrates by Bifidobacterium spp. Int J Food Microbiol. 1994;24(1–2):199–210. doi:10.1016/0168-1605(94)90119-8.
  • Komeno M, Hayamizu H, Fujita K, Ashida H. Two Novel alpha-l-Arabinofuranosidases from Bifidobacterium longum subsp. longum Belonging to Glycoside Hydrolase Family 43 Cooperatively Degrade Arabinan. Appl Environ Microbiol. 2019;85(6):e02582-18.
  • Kohno M, Suzuki S, Kanaya T, Yoshino T, Matsuura Y, Asada M, Kitamura S. Structural characterization of the extracellular polysaccharide produced by Bifidobacterium longum JBL05. Carbohydr Polym. 2009;77(2):351–357. doi:10.1016/j.carbpol.2009.01.013.
  • Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, Pudlo NA, Porter NT, Urs K, Thompson AJ, Cartmell A, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517(7533):165–169. doi:10.1038/nature13995.
  • Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, Hirose J, Katayama T, Yamamoto K, Kumagai H, et al. Bifidobacterium longum subsp. infantis uses two different b-galactosidases β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology. 2012;22(3):361–368. doi:10.1093/glycob/cwr116.
  • Viborg AH, Katayama T, Abou Hachem M, Andersen MC, Nishimoto M, Clausen MH, Urashima T, Svensson B, Kitaoka M. Distinct substrate specificities of three glycoside hydrolase family 42 b-galactosidases -galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697. Glycobiology. 2014;24(2):208–216. doi:10.1093/glycob/cwt104.
  • Nishijima S, Suda W, Oshima K, Kim S-W, Hirose Y, Morita H, Hattori M. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016;23(2):125–133. doi:10.1093/dnares/dsw002.
  • De MAN JC, ROGOSA M, Sharpe ME. A medium for the cultivation of Lactobacilli. J Appl Bacteriol. 1960;23(1):130–135. doi:10.1111/j.1365-2672.1960.tb00188.x.
  • Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, Yachi H, Sugiyama Y, Kurihara S, Hirose J, et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv. 2019;5(8):eaaw7696. doi:10.1126/sciadv.aaw7696.
  • Kanesaki Y, Masutani H, Sakanaka M, Shiwa Y, Fujisawa T, Nakamura Y, Yokota A, Fukiya S, Suzuki T, Yoshikawa H. Complete genome sequence of bifidobacterium longum 105-A, a strain with high transformation efficiency. Genome Announc. 2014;2(6):e01311-14.
  • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543–547. doi:10.1038/nature09646.
  • Edwards AN, Suarez JM, McBride SM. Culturing and maintaining Clostridium difficile in an anaerobic environment. J Vis Exp. 2013;(79):e50787.
  • Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol. 2004;97(6):1166–1177. doi:10.1111/j.1365-2672.2004.02409.x.