6,214
Views
116
CrossRef citations to date
0
Altmetric
Review

Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

, , , &
Pages 362-371 | Received 23 Sep 2014, Accepted 20 Mar 2015, Published online: 11 Jun 2015

References

  • Dixon DM, McNeil MM, Cohen ML, Gellin BG, La Montagne JR. Fungal infections: a growing threat. Public Health Rep 1996; 111:226; PMID:8643813
  • Saral R. Candida and Aspergillus infections in immunocompromised patients: an overview. Rev Infect Dis 1991; 13:487-92; PMID:1866554; http://dx.doi.org/10.1093/clinids/13.3.487
  • Pfaller M, Diekema D. Epidemiology of invasive candidiasis: a persistent public health problem. ClinMicrobiol Rev 2007; 20:133-63; PMID:17223626
  • Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. CritRev Microbiol 2010; 36:1-53; PMID:20088682
  • León C, Ostrosky-Zeichner L, Schuster M. What's new in the clinical and diagnostic management of invasive candidiasis in critically ill patients. Intensive Care Med 2014; 40(6):808-19; http://dx.doi.org/10.1007/s00134-014-3281-0
  • Kourkoumpetis T, Manolakaki D, Velmahos G, Chang Y, Alam HB, De Moya MM, Sailhamer EA, Mylonakis E. Candida infection and colonization among non-trauma emergency surgery patients. Virulence 2010; 1(5): 359-66; PMID:21178471; http://dx.doi.org/10.4161/viru.1.5.12795
  • Pierce CG, Lopez-Ribot JL. Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Exp Opin Drug Dis 2013; 8:1117-26; PMID:23738751; http://dx.doi.org/10.1517/17460441.2013.807245
  • Hatipoglu N, Hatipoglu H. Combination antifungal therapy for invasive fungal infections in children and adults. Expert Rev Anti Infect Ther 2013; 11:523-35; PMID:23627858; http://dx.doi.org/10.1586/eri.13.29
  • Baddley JW, Poppas PG. Antifungal combination therapy. Drugs 2005; 65:1461-80; PMID:16033288; http://dx.doi.org/10.2165/00003495-200565110-00002
  • Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ, Edwards JE. Guidelines for treatment of candidiasis. Clin Infect Dis 2004; 38:161-89; PMID:14699449; http://dx.doi.org/10.1086/380796
  • Gauwerky K, Borelli C, Korting HC. Targeting virulence: a new paradigm for antifungals. Drug Discov Today 2009; 14:214-22; PMID:19152839; http://dx.doi.org/10.1016/j.drudis.2008.11.013
  • Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 2007; 3:541-8; PMID:17710100; http://dx.doi.org/10.1038/nchembio.2007.24
  • Hirano M, Takeuchi Y, Matsumori N, Murata M, Ide T. Channels formed by amphotericin B covalent dimers exhibit rectification. J Membrane Biol 2011; 240:159-64; PMID:21424544; http://dx.doi.org/10.1007/s00232-011-9354-x
  • Matsumori N, Masuda R, Murata M. Amphotericin B covalent dimers bearing a tartarate linkage. Chem Biodivers 2004; 1:346-52; PMID:17191852; http://dx.doi.org/10.1002/cbdv.200490030
  • Lupetti A, Danesi R, Campa M, Del Tacca M, Kelly S. Molecular basis of resistance to azole antifungals. Trends Mol Med 2002; 8:76-81; PMID:11815273; http://dx.doi.org/10.1016/S1471-4914(02)02280-3
  • White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998; 11:382-402; PMID:9564569
  • Holt SL, Drew RH. Echinocandins: Addressing outstanding questions surrounding treatment of invasive fungal infections. Am J Health-Syst Ph 2011; 68:1207-20; PMID:21690427; http://dx.doi.org/10.2146/ajhp100456
  • Morschhäuser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 2010; 47:94-106; http://dx.doi.org/10.1016/j.fgb.2009.08.002
  • Domínguez JM, Kelly VA, Kinsman OS, Marriott MS, de las Heras FG, Martín JJ. Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 1998; 42:2274-8
  • Borgers M. Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives. Rev Infect Dis 1980; 2:520-34; PMID:7003674; http://dx.doi.org/10.1093/clinids/2.4.520
  • Nishikawa H, Yamada E, Shibata T, Uchihashi S, Fan H, Hayakawa H, Nomura N, Mitsuyama J. Uptake of T-2307, a novel arylamidine, in Candida albicans. J Antimicrob Chemoth 2010; 65(8):1681-87; PMID:20513704; http://dx.doi.org/10.1093/jac/dkq177
  • Shibata T, Takahashi T, Yamada E, Kimura A, Nishikawa H, Hayakawa H, Nomura N, Mitsuyama J. T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob Agents Chemother 2012; 56:5892-7; PMID:22948882; http://dx.doi.org/10.1128/AAC.05954-11
  • Mitchell K, Taff H, Cuevas M, Reinicke E, Sanchez H, Andes D. Role of matrix β-1, 3 glucan in antifungal resistance of non-albicans Candida biofilms. Antimicrob Agents Chemother 2013; 57:1918-20; PMID:23318790; http://dx.doi.org/10.1128/AAC.02378-12
  • Duvvuri M, Krise JP. Intracellular drug sequestration events associated with the emergence of multidrug resistance: a mechanistic review. Front Biosci 2005; 10:1499-509; PMID:15769640; http://dx.doi.org/10.2741/1634
  • Maebashi K, Kudoh M, Nishiyama Y, Makimura K, Uchida K, Mori T, Yamaguchi H. A novel mechanism of fluconazole resistance associated with fluconazole sequestration in Candida albicans isolates from a myelofibrosis patient. Microbiol Immunol 2002; 46:317-26; PMID:12139391; http://dx.doi.org/10.1111/j.1348-0421.2002.tb02702.x
  • Cowen LE. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 2008; 6:187-98; PMID:18246082; http://dx.doi.org/10.1038/nrmicro1835
  • Paulsen IT. Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol 2003; 6:446-51; PMID:14572535; http://dx.doi.org/10.1016/j.mib.2003.08.005
  • Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006, 313(5785): 367-370; PMID:16857942
  • Selmecki, A., Gerami-Nejad M., Paulson C., Forche A., Berman J. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol Microbiol 2008; 68:624-641; PMID:18363649; http://dx.doi.org/10.1111/j.1365-2958.2008.06176.x
  • Perea S, López-Ribot JL, Kirkpatrick WR, McAtee RK, Santillán RA, Martínez M, Calabrese D, Sanglard D, Patterson TF. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2001; 45:2676-84; PMID:11557454; http://dx.doi.org/10.1128/AAC.45.10.2676-2684.2001
  • Odds F. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Ch 2003; 52:1-1; PMID:12805255; http://dx.doi.org/10.1093/jac/dkg301
  • Liu X, Ashforth E, Ren B, Song F, Dai H, Liu M, Wang J, Xie Q, Zhang L. Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot 2010; 63:415-22; PMID:20606699; http://dx.doi.org/10.1038/ja.2010.56
  • Zhang L, Yan K, Zhang Y, Huang R, Bian J, Zheng C, Sun H, Chen Z, Sun N, An R. High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. P Natl Acad Sci USA 2007; 104:4606-11.
  • Ashforth EJ, Fu C, Liu X, Dai H, Song F, Guo H, Zhang L. Bioprospecting for antituberculosis leads from microbial metabolites. Nat Prod Rep 2010; 27:1709-19; PMID:20922218; http://dx.doi.org/10.1039/c0np00008f
  • Chen X, Ren B, Chen M, Liu M-X, Ren W, Wang Q-X, Zhang L-X, Yan G-Y. ASDCD: antifungal synergistic drug combination database. PloS One 2014; 9:e86499; PMID:24475134; http://dx.doi.org/10.1371/journal.pone.0086499
  • Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol 2001; 9:327-35; PMID:11435107; http://dx.doi.org/10.1016/S0966-842X(01)02094-7
  • Jones BD, Falkow S. Salmonellosis: Host immune responses and bacterial virulence determinants1. Annu RevImmunol 1996; 14:533-61; PMID:8717524; http://dx.doi.org/10.1146/annurev.immunol.14.1.533
  • Garcia-Vidal C, Viasus D, Carratala J. Pathogenesis of invasive fungal infections. Curr Opin Infect Dis 2013; 26:270-6; PMID:23449139; http://dx.doi.org/10.1097/QCO.0b013e32835fb920
  • Gozalbo D, Roig P, Villamon E, Gil ML. Candida and candidiasis: the cell wall as a potential molecular target for antifungal therapy. Curr Drug Targets Infect Disord 2004; 4:117-35; PMID:15180460; http://dx.doi.org/10.2174/1568005043341046
  • Cassone A, Bernardis F, Torososantucci A. An outline of the role of anti-candida antibodies within the context of passive immunization and protection from candidiasis. Curr Mol Med 2005; 5:377-82; PMID:15977993; http://dx.doi.org/10.2174/1566524054022549
  • De Backer MD, Magee PT, Pla J. Recent developments in molecular genetics of Candida albicans. Annu Re Microbiol 2000; 54:463-98; PMID:11018135; http://dx.doi.org/10.1146/annurev.micro.54.1.463
  • Odds FC, Gow NA, Brown AJ. Fungal virulence studies come of age. Genome Biol 2001; 2:1009.1-.4.
  • Casadevall A, Pirofski L. Host-pathogen interactions: the attributes of virulence. J Infect Dis 2001; 184:337-44; PMID:11443560; http://dx.doi.org/10.1086/322044
  • Hoeg L, Thoma-Greber E, Röcken M, Korting H. HIV protease inhibitors influence the prevalence of oral candidosis in HIVinfected patients: a 2-year study. Mycoses 1998; 41:321-5; PMID:9861838; http://dx.doi.org/10.1111/j.1439-0507.1998.tb00345.x
  • Korting HC, Schaller M, Eder G, Hamm G, Böhmer U, Hube B. Effects of the human immunodeficiency virus (HIV) proteinase inhibitors saquinavir and indinavir on in vitro activities of secreted aspartyl proteinases of Candida albicans isolates from HIV-infected patients. Antimicrob Agents Chemother 1999; 43:2038-42; PMID:10428932
  • Bein M, Schaller M, Korting HC. The secreted aspartic proteinases as a new target in the therapy of candidiasis. Curr Drug Targets 2002; 3(5): 351-357; PMID:12182226; http://dx.doi.org/10.2174/1389450023347542
  • Casolari C, Rossi T, Baggio G, Coppi A, Zandomeneghi G, Ruberto AI, Farina C, Fabio G, Zanca A, Castelli M. Interaction between saquinavir and antimycotic drugs on C. albicans and C. neoformans strains. Pharmacol Res 2004; 50(6): 605-610; PMID:15501699; http://dx.doi.org/10.1016/j.phrs.2004.06.008
  • Ganendren R, Widmer F, Singhal V, Wilson C, Sorrell T, Wright L. In vitro antifungal activities of inhibitors of phospholipases from the fungal pathogen Cryptococcus neoformans. Antimicrob Agents Chemother 2004; 48:1561-9; PMID:15105106; http://dx.doi.org/10.1128/AAC.48.5.1561-1569.2004
  • Soll DR. Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Trop 2002; 81:101-10; PMID:11801217; http://dx.doi.org/10.1016/S0001-706X(01)00200-5
  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell 1997; 90:939-49; PMID:9298905; http://dx.doi.org/10.1016/S0092-8674(00)80358-X
  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2003; 2:1053-60; PMID:14555488; http://dx.doi.org/10.1128/EC.2.5.1053-1060.2003
  • Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell 2007; 6:2429-36; PMID:17981993; http://dx.doi.org/10.1128/EC.00252-07
  • Joyner PM, Liu J, Zhang Z, Merritt J, Qi F, Cichewicz RH. Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Org Biomol Chem 2010; 8:5486-9; PMID:20852771; http://dx.doi.org/10.1039/c0ob00579g
  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. App Environ Microb 2001; 67:2982-92; PMID:11425711; http://dx.doi.org/10.1128/AEM.67.7.2982-2992.2001
  • Chang W, Li Y, Zhang L, Cheng A, Lou H. Retigeric acid B attenuates the virulence of Candida albicans via inhibiting adenylyl cyclase activity targeted by enhanced farnesol production. PloS One 2012; 7:e41624; PMID:22848547; http://dx.doi.org/10.1371/journal.pone.0041624
  • Gibson J, Sood A, Hogan DA. Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol 2009; 75:504-13; PMID:19011064; http://dx.doi.org/10.1128/AEM.01037-08
  • Hogan DA, Vik Å, Kolter R. A Pseudomonas aeruginosa quorumsensing molecule influences Candida albicans morphology. Mol Microbiol 2004; 54:1212-23; PMID:15554963; http://dx.doi.org/10.1111/j.1365-2958.2004.04349.x
  • Zhang L, Chang W, Sun B, Groh M, Speicher A, Lou H. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PloS One 2011; 6:e28953; PMID:22174935; http://dx.doi.org/10.1371/journal.pone.0028953
  • Nett J, Andes D. Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol 2006; 9:340-5; PMID:16815078; http://dx.doi.org/10.1016/j.mib.2006.06.007
  • Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol 2009; 35:340-55; PMID:19863383; http://dx.doi.org/10.3109/10408410903241436
  • Martins M, Henriques M, Lopez-Ribot JL, Oliveira R. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 2012; 55:80-5; PMID:21668524; http://dx.doi.org/10.1111/j.1439-0507.2011.02047.x
  • Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 2010; 6:e1000828; PMID:20360962; http://dx.doi.org/10.1371/journal.ppat.1000828
  • Bader T, Bodendorfer B, Schröppel K, Morschhäuser J. Calcineurin is essential for virulence in Candida albicans. Infect Immun 2003; 71:5344-54; PMID:12933882; http://dx.doi.org/10.1128/IAI.71.9.5344-5354.2003
  • Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 2003; 48:959-76; PMID:12753189; http://dx.doi.org/10.1046/j.1365-2958.2003.03495.x
  • Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, Perfect JR, McCusker JH, Heitman J. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 2002; 21:546-59; PMID:11847103; http://dx.doi.org/10.1093/emboj/21.4.546
  • Blankenship JR, Heitman J. Calcineurin is required for Candida albicans to survive calcium stress in serum. Infect Immun 2005; 73:5767-74; PMID:16113294; http://dx.doi.org/10.1128/IAI.73.9.5767-5774.2005
  • Steinbach WJ, Reedy JL, Cramer RA, Perfect JR, Heitman J. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 2007; 5:418-30; PMID:17505522; http://dx.doi.org/10.1038/nrmicro1680
  • Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 1999; 12:501-17; PMID:10515900
  • Cowen LE, Lindquist S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 2005; 309:2185-9; PMID:16195452; http://dx.doi.org/10.1126/science.1118370
  • LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AL, Perfect JR, Cowen LE. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 2010; 6:e1001069; PMID:20865172; http://dx.doi.org/10.1371/journal.ppat.1001069
  • Mayer FL, Wilson D, Jacobsen ID, Miramón P, Slesiona S, Bohovych IM, Brown AJ, Hube B. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PloS One 2012; 7:e38584; PMID:22685587; http://dx.doi.org/10.1371/journal.pone.0038584
  • Mayer FL, Wilson D, Hube B. Hsp21 potentiates antifungal drug tolerance in Candida albicans. PloS One 2013; 8:e60417; PMID:23533680; http://dx.doi.org/10.1371/journal.pone.0060417
  • Tobudic S, Kratzer C, Lassnigg A, Presterl E. Antifungal susceptibility of Candida albicans in biofilms. Mycoses 2012; 55:199-204; PMID:21793943; http://dx.doi.org/10.1111/j.1439-0507.2011.02076.x
  • Baillie GS, Douglas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Ch 2000; 46:397-403; PMID:10980166; http://dx.doi.org/10.1093/jac/46.3.397
  • Ramage G, Saville SP, Thomas DP, López-Ribot JL. Candida biofilms: an update. Eukaryot Cell 2005; 4:633-8; PMID:15821123; http://dx.doi.org/10.1128/EC.4.4.633-638.2005
  • Kuhn D, George T, Chandra J, Mukherjee P, Ghannoum M. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 2002; 46:1773-80; PMID:12019089; http://dx.doi.org/10.1128/AAC.46.6.1773-1780.2002
  • Bink A, Pellens K, Cammue B, Thevissen K. Anti-biofilm strategies: how to eradicate Candida biofilms. Open Mycol J 2011; 5:29-38; http://dx.doi.org/10.2174/1874437001105010029
  • Bachmann SP, Ramage G, VandeWalle K, Patterson TF, Wickes BL, López-Ribot JL. Antifungal Combinations against Candida albicans Biofilms In vitro. Antimicrob Agents Chemother 2003; 47:3657-9; PMID:14576141; http://dx.doi.org/10.1128/AAC.47.11.3657-3659.2003
  • Khan MSA, Ahmad I. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemoth 2012; 67:618-21; PMID:22167241; http://dx.doi.org/10.1093/jac/dkr512
  • Shinde RB, Chauhan NM, Raut JS, Karuppayil SM. Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A. Ann Clin Microbiol Antimicrob 2012; 11:1-6; PMID:22236533; http://dx.doi.org/10.1186/1476-0711-11-27
  • Shinde RB, Raut JS, Chauhan NM, Karuppayil SM. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles. Braz J Infect Dis. 2013; 17:395-400; PMID:23602464; http://dx.doi.org/10.1016/j.bjid.2012.11.002
  • Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 2007; 3:e18; PMID:17274686; http://dx.doi.org/10.1371/journal.ppat.0030018
  • Cury AE, Hirschfeld MPM. Interactions between amphotericin B and nitroimidazoles against Candida albicans. Mycoses 1997; 40:187-92; PMID:9476486; http://dx.doi.org/10.1111/j.1439-0507.1997.tb00212.x
  • Van't Hof W, Reijnders IM, Helmerhorst EJ, Walgreen-Weterings E, Simoons-Smit IM, Veerman EC, Amerongen AVN. Synergistic effects of low doses of histatin 5 and its analogues on amphotericin B anti-mycotic activity. AntonVan Leeuwenhoek 2000; 78:163-9; PMID:11204768; http://dx.doi.org/10.1023/A:1026572128004
  • Zhang H, Wang K, Zhang G, Ho HI, Gao A. Synergistic anti-candidal activity of tetrandrine on ketoconazole: an experimental study. Planta Med 2010; 76:53-61; PMID:19644794; http://dx.doi.org/10.1055/s-0029-1185973
  • Ahmad A, Khan A, Manzoor N. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur J Pharm Sci 2013; 48:80-6; PMID:23111348; http://dx.doi.org/10.1016/j.ejps.2012.09.016
  • Zhang J, Liu W, Tan J, Sun Y, Wan Z, Li R. Antifungal activity of geldanamycin alone or in combination with fluconazole against Candida species. Mycopathologia 2013; 175:273-9; PMID:23341047; http://dx.doi.org/10.1007/s11046-012-9612-1
  • Sharma M, Manoharlal R, Negi AS, Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res 2010; 10:570-8; PMID:20528949
  • Quan H, Cao Y-Y, Xu Z, Zhao J-X, Gao P-H, Qin X-F, Jiang Y-Y. Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemother 2006; 50:1096-9; PMID:16495278; http://dx.doi.org/10.1128/AAC.50.3.1096-1099.2006
  • Iwazaki RS, Endo EH, Ueda-Nakamura T, Nakamura CV, Garcia LB, Dias Filho BP. In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie Van Leeuwenhoek 2010; 97:201-5; PMID:19882381; http://dx.doi.org/10.1007/s10482-009-9394-8
  • Li D-D, Xu Y, Zhang D-Z, Quan H, Mylonakis E, Hu D-D, Li M-B, Zhao L-X, Zhu L-H, Wang Y. Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother 2013:AAC. 00499-13
  • Jansen G, Lee AY, Epp E, Fredette A, Surprenant J, Harcus D, Scott M, Tan E, Nishimura T, Whiteway M. Chemogenomic profiling predicts antifungal synergies. Mol Syst Biol 2009; 5:338; PMID:20029371; http://dx.doi.org/10.1038/msb.2009.95
  • Chen Y-L, Lehman VN, Averette AF, Perfect JR, Heitman J. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans. PloS One 2013; 8:e57672; PMID:23472097; http://dx.doi.org/10.1371/journal.pone.0057672
  • Barchiesi F, Di Francesco LF, Compagnucci P, Arzeni D, Giacometti A, Scalise G. Invitro interaction of terbinafine with amphotericin B, fluconazole and itraconazole against clinical isolates of Candida albicans. J Antimicrob Chemoth 1998; 41:59-65; PMID:9511038; http://dx.doi.org/10.1093/jac/41.1.59
  • Dupont B, Drouhet E. In vitro synergy and antagonism of antifungal agents against yeast-like fungi. Postgrad Med J 1979; 55:683-6; PMID:523360; http://dx.doi.org/10.1136/pgmj.55.647.683
  • Chin N, Weitzman I, Della-Latta P. In vitro activity of fluvastatin, a cholesterol-lowering agent, and synergy with flucanazole and itraconazole against Candida species and Cryptococcus neoformans. Antimicrob Agents Chemother 1997; 41:850-2; PMID:9087504
  • Sun S, Li Y, Guo Q, Shi C, Yu J, Ma L. In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. Antimicrob Agents Chemother 2008; 52:409-17; PMID:18056277; http://dx.doi.org/10.1128/AAC.01070-07
  • Sun L, Sun S, Cheng A, Wu X, Zhang Y, Lou H. In vitro activities of retigeric acid B alone and in combination with azole antifungal agents against Candida albicans. Antimicrob Agents Chemother 2009; 53:1586-91; PMID:19171796; http://dx.doi.org/10.1128/AAC.00940-08
  • Kobayashi T, Kakeya H, Miyazaki T, Izumikawa K, Yanagihara K, Ohno H, Yamamoto Y, Tashiro T, Kohno S. Synergistic antifungal effect of lactoferrin with azole antifungals against Candida albicans and a proposal for a new treatment method for invasive candidiasis. JPN J Infect Dis 2011; 64:292-6; PMID:21788703
  • Sharma M, Prasad R. The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob Agents Chemother 2011; 55:4834-43; PMID:21768514; http://dx.doi.org/10.1128/AAC.00344-11
  • Guo Q, Sun S, Yu J, Li Y, Cao L. Synergistic activity of azoles with amiodarone against clinically resistant Candida albicans tested by chequerboard and time-kill methods. J Med Microbiol 2008; 57:457-62; PMID:18349365; http://dx.doi.org/10.1099/jmm.0.47651-0
  • Khan MSA, Malik A, Ahmad I. Anti-candidal activity of essential oils alone and in combination with amphotericin B or fluconazole against multi-drug resistant isolates of Candida albicans. Med Mycol 2012; 50:33-42; PMID:21756200; http://dx.doi.org/10.3109/13693786.2011.582890
  • Jin J, Guo N, Zhang J, Ding Y, Tang X, Liang J, Li L, Deng X, Yu L. The synergy of honokiol and fluconazole against clinical isolates of azole‐resistant Candida albicans. Lett App Microbiol 2010; 51:351-7; PMID:20681969; http://dx.doi.org/10.1111/j.1472-765X.2010.02900.x
  • Liu W, Li LP, Zhang JD, Li Q, Shen H, Chen SM, He LJ, Yan L, Xu GT, An MM. Synergistic antifungal effect of glabridin and fluconazole. PloS One 2014; 9:e103442; PMID:25058485; http://dx.doi.org/10.1371/journal.pone.0103442
  • Simonetti G, Simonetti N, Villa A. Increase of activity of tioconazole against resistant microorganisms by the addition of butylated hydroxyanisole. Int J Antimicrob Ag 2003; 22:439-43; PMID:14522107; http://dx.doi.org/10.1016/S0924-8579(03)00120-1
  • Fu Z, Lu H, Zhu Z, Yan L, Jiang Y, Cao Y. Combination of baicalein and amphotericin B accelerates Candida albicans apoptosis. Biol Pharm Bull 2010; 34:214-8; PMID:21415530; http://dx.doi.org/10.1248/bpb.34.214
  • Sharma M, Manoharlal R, Shukla S, Puri N, Prasad T, Ambudkar SV, Prasad R. Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with Antifungals. Antimicrob Agents Chemother 2009; 53:3256-65; PMID:19470507; http://dx.doi.org/10.1128/AAC.01497-08
  • Chaturvedi V, Ramani R, Andes D, Diekema DJ, Pfaller MA, Ghannoum MA, Knapp C, Lockhart SR, Ostrosky-Zeichner L, Walsh TJ, et al. Multilaboratory testing of two-drug combinations of antifungals against Candida albicans, Candidaglabrata, and Candidaparapsilosis. Antimicrob Agents Chemother 2011; 55:1543-8; PMID:21282457; http://dx.doi.org/10.1128/AAC.01510-09
  • Shi WN, Chen ZZ, Chen X, Cao LL, Liu P, Sun SJ. The combination of minocycline and fluconazole causes synergistic growth inhibition against Candida albicans: an in vitro interaction of antifungal and antibacterial agents. FEMS Yeast Res 2010; 10:885-93; PMID:20707818; http://dx.doi.org/10.1111/j.1567-1364.2010.00664.x
  • Huang S, Cao YY, Dai BD, Sun XR, Zhu ZY, Cao YB, Wang Y, Gao PH, Jiang YY. In vitro synergism of fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluconazole. Biol Pharm Bull 2008; 31:2234-6; PMID:19043205; http://dx.doi.org/10.1248/bpb.31.2234
  • Sasaki E, Maesaki S, Miyazaki Y, Yanagihara K, Tomono K, Tashiro T, Kohno S. Synergistic effect of ofloxacin and fluconazole against azole-resistant Candida albicans. J Infect Chemother 2000; 6:151-4; PMID:11810556; http://dx.doi.org/10.1007/s101560070014
  • Uppuluri P, Nett J, Heitman J, Andes D. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 2008; 52:1127-32; PMID:18180354; http://dx.doi.org/10.1128/AAC.01397-07
  • Wei GX, Xu X, Wu CD. In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures. Arch Oral Biol 2011; 56:565-72; PMID:21272859; http://dx.doi.org/10.1016/j.archoralbio.2010.11.021
  • Zhou YB, Wang GG, Li YT, Liu Y, Song Y, Zheng WS, Zhang N, Hu XY, Yan SK, Jia JH. In vitro interactions between aspirin and amphotericin B against planktonic cells and biofilm cells of Candida albicans and C. parapsilosis. Antimicrob Agents Chemother 2012; 56:3250-60; PMID:22391539; http://dx.doi.org/10.1128/AAC.06082-11
  • Troskie AM, Rautenbach M, Delattin N, Vosloo JA, Dathe M, Cammue BP, Thevissen K. Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 2014; 58:3697-707; PMID:24752256; http://dx.doi.org/10.1128/AAC.02381-14
  • Delattin N, De Brucker K, Vandamme K, Meert E, Marchand A, Chaltin P, Cammue BP, Thevissen K. Repurposing as a means to increase the activity of amphotericin B and caspofungin against Candida albicans biofilms. J Antimicrob Chemother 2014; 69:1035-44; PMID:24284780; http://dx.doi.org/10.1093/jac/dkt449
  • Venkatesh M, Rong L, Raad I, Versalovic J. Novel synergistic antibiofilm combinations for salvage of infected catheters. J Med Microbiol 2009; 58:936-44; PMID:19502361; http://dx.doi.org/10.1099/jmm.0.009761-0
  • Pemmaraju SC, Pruthi PA, Prasad R, Pruthi V. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J Exp Biol 2013; 51:1032-7; PMID:24416942
  • Gao Y, Li H, Liu S, Zhang X, Sun S. Synergistic effect of fluconazole and doxycycline against Candida albicans biofilms resulting from calcium fluctuation and downregulation of fluconazole-inducible efflux pump gene overexpression. J Med Microbiol 2014; 63:956-61; PMID:24809386; http://dx.doi.org/10.1099/jmm.0.072421-0
  • Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candidaglabrata biofilms. Mycoses 2013; 56:672-80; PMID:23773119; http://dx.doi.org/10.1111/myc.12093
  • Gao Y, Zhang C, Lu C, Liu P, Li Y, Li H, Sun S. Synergistic effect of doxycycline and fluconazole against Candida albicans biofilms and the impact of calcium channel blockers. FEMS Yeast Res 2013; 13:453-62; PMID:23577622; http://dx.doi.org/10.1111/1567-1364.12048
  • You JL, Du L, King JB, Hall BE, Cichewicz RH. Small molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida Isolates. ACS Chem Biol 2013; 8:840-8; PMID:23387427; http://dx.doi.org/10.1021/cb400009f
  • Yu Q, Ding X, Xu N, Cheng X, Qian K, Zhang B, Xing L, Li M. In vitro activity of verapamil alone and in combination with fluconazole or tunicamycin against Candida albicans biofilms. Int J Antimicrob Agents 2013; 41:179-82; PMID:23265915; http://dx.doi.org/10.1016/j.ijantimicag.2012.10.009
  • Shinde RB, Chauhan NM, Raut JS, Karuppayil SM. Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A. Ann Clin Microb Anti 2012; 11:27; PMID:23035934
  • Del Pozo JL, Frances ML, Hernaez S, Serrera A, Alonso M, Rubio MF. Effect of amphotericin B alone or in combination with rifampicin or clarithromycin against Candida species biofilms. Int J Artif Organs 2011; 34:766-70; PMID:22094555; http://dx.doi.org/10.5301/ijao.5000023
  • Chen YL, Lehman VN, Averette AF, Perfect JR, Heitman J. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans. PloS One 2013; 8:e57672; PMID:23472097; http://dx.doi.org/10.1371/journal.pone.0057672
  • Hossain MA, Reyes GH, Long LA, Mukherjee PK, Ghannoum MA. Efficacy of caspofungin combined with amphotericin B against azole-resistant Candida albicans. J Antimicrob Chemother 2003; 51:1427-9; PMID:12716772; http://dx.doi.org/10.1093/jac/dkg230
  • Zhang H, Wang K, Zhang G, Ho HI, Gao A. Synergistic anti-candidal activity of tetrandrine on ketoconazole: an experimental study. Planta Med 2010; 76:53-61; PMID:19644794; http://dx.doi.org/10.1055/s-0029-1185973
  • Han Y, Lee JH. Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol Pharm Bull 2005; 28:541-4; PMID:15744087; http://dx.doi.org/10.1248/bpb.28.541
  • Hanson LH, Perlman AM, Clemons KV, Stevens DA. Synergy between cilofungin and amphotericin B in a murine model of candidiasis. Antimicrob Agents Chemother 1991; 35:1334-7; PMID:1929290; http://dx.doi.org/10.1128/AAC.35.7.1334
  • MacCallum DM, Desbois AP, Coote PJ. Enhanced efficacy of synergistic combinations of antimicrobial peptides with caspofungin versus Candida albicans in insect and murine models of systemic infection. Eur J Clin Microbiol 2013; 32:1055-62; PMID:23572153; http://dx.doi.org/10.1007/s10096-013-1850-8
  • Hector RF, Schaller K. Positive interaction of nikkomycins and azoles against Candida albicansin vitro and in vivo. Antimicrob Agents Chemother 1992; 36:1284-9; PMID:1416829; http://dx.doi.org/10.1128/AAC.36.6.1284
  • Polak A. Combination therapy of experimental candidiasis, cryptococcosis, aspergillosis and wangiellosis in mice. Chemotherapy 1987; 33:381-95; PMID:2822362; http://dx.doi.org/10.1159/000238524
  • Kujath P, Lerch K, Kochendorfer P, Boos C. Comparative study of the efficacy of fluconazole versus amphotericin B/flucytosine in surgical patients with systemic mycoses. Infection 1993; 21:376-82; PMID:8132367; http://dx.doi.org/10.1007/BF01728917
  • AbeleHorn M, Kopp A, Sternberg U, Ohly A, Dauber A, Russwurm W, Buchinger W, Nagengast O, Emmerling P. A randomized study comparing fluconazole with amphotericin B/5-flucytosine for the treatment of systemic Candida infections in intensive care patients. Infection 1996; 24:426-32; PMID:9007589; http://dx.doi.org/10.1007/BF01713042
  • Casado JL, Quereda C, Oliva J, Navas E, Moreno A, Pintado V, Cobo J, Corral I. Candidal meningitis in HIV-infected patients: Analysis of 14 cases. Clin Infec Dis 1997; 25:673-6; PMID:9314460; http://dx.doi.org/10.1086/513746
  • Pina-Vaz C, Sansonetty F, Rodrigues AG, Martinez-De-Oliveira J, Fonseca AF, Mardh PA. Antifungal activity of ibuprofen alone and in combination with fluconazole against Candida species. J Med Microbiol 2000; 49:831-40; PMID:10966233
  • Scheven M, Junemann K, Schramm H, Huhn W. Successful treatment of a Candidaalbicans sepsis with a combination of flucytosine and fluconazole. Mycoses 1992; 35:315-6; PMID:1302806; http://dx.doi.org/10.1111/j.1439-0507.1992.tb00886.x
  • Rex JH, Pappas PG, Karchmer AW, Sobel J, Edwards JE, Hadley S, Brass C, Vazquez JA, Chapman SW, Horowitz HW, et al. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis 2003; 36:1221-8; PMID:12746765; http://dx.doi.org/10.1086/374850
  • Ghannoum MA, Elewski B. Successful treatment of fluconazole-resistant oropharyngeal candidiasis by a combination of fluconazole and terbinafine. Clin Diagn Lab Immun 1999; 6:921-3; PMID:10548586
  • Pachl J, Svoboda P, Jacobs F, Vandewoude K, Van der Hoven B, Spronk P, Masterson G, Malbrain M, Aoun M, Garbino J, et al. A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 2006; 42:1404-13; PMID:16619152; http://dx.doi.org/10.1086/503428

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.