1,329
Views
22
CrossRef citations to date
0
Altmetric
Research Paper

Contribution of nuclease to the pathogenesis of Aeromonas hydrophila

, , , , , , & show all
Pages 515-522 | Received 26 Jan 2015, Accepted 04 May 2015, Published online: 24 Jun 2015

References

  • Janda JM. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin Microbiol Rev 1991; 4:397-410; PMID:1747858
  • Harikrishnan R, Balasundaram C. Modern trends in Aeromonas hydrophila disease management with fish. Rev Fish Sci 2005; 13:281e320; http://dx.doi.org/10.1080/10641260500320845
  • Trower CJ, Abo S, Majeed KN, von Itzstein M. Production of an enterotoxin by a gastro-enteritis-associated Aeromonas strain. J Med Microbiol 2000; 49:121-6; PMID:10670562
  • Blair JE, Woo-Ming MA, McGuire PK. Aeromonas hydrophila bacteremia acquired from an infected swimming pool. Clin Infect Dis 1999; 28:1336-7; PMID:10451187; http://dx.doi.org/10.1086/517793
  • Martins LM, Marquez RF, Yano T. Incidence of toxic Aeromonas isolated from food and human infection. FEMS Immunol Med Microbiol 2002; 32:237-42; PMID:11934569; http://dx.doi.org/10.1111/j.1574-695X.2002.tb00559.x
  • Grim CJ, Kozlova EV, Ponnusamy D, Fitts EC, Sha J, Kirtley ML, van Lier CJ, Tiner BL, Erova TE, Joseph SJ, et al. Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila. Appl Environ Microbiol 2014; 80:4162-83; PMID:24795370; http://dx.doi.org/10.1128/AEM.00486-14
  • Sha J, Kozlova EV, Chopra AK. Role of various enterotoxins in Aeromonas hydrophila-induced gastroenteritis: generation of enterotoxin gene-deficient mutants and evaluation of their enterotoxic activity. Infect Immun 2002; 70:1924-35; PMID:11895956; http://dx.doi.org/10.1128/IAI.70.4.1924-1935.2002
  • Liu P, Pian Y, Li X, Liu R, Xie W, Zhang C, Zheng Y, Jiang Y, Yuan Y. Streptococcus suis adenosine synthase functions as an effector in evasion of PMN-mediated innate immunity. J Infect Dis 2014; 210:35-45; PMID:24446521; http://dx.doi.org/10.1093/infdis/jiu050
  • Goldmann O, Medina E. The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol 2013; 3:420; PMID:23335924; http://dx.doi.org/10.3389/fimmu.2012.00420
  • Von Kockritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M, Medina E. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 2008; 111:3070-80; PMID:18182576; http://dx.doi.org/10.1182/blood-2007-07-104018
  • Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 2008; 14:949-53; PMID:18690244; http://dx.doi.org/10.1038/nm.1855
  • Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, Gallo RL, Monestier M, Wang Y, Glass CK, et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 2010; 8:445-54; PMID:21075355; http://dx.doi.org/10.1016/j.chom.2010.10.005
  • Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 2012; 198:773-83; PMID:22945932; http://dx.doi.org/10.1083/jcb.201203170
  • Palić D, Ostojić J, Andreasen CB, Roth JA. Fish cast NETs: neutrophil extracellular traps are released from fish neutrophils. Dev Comp Immunol 2007; 31:805-16; PMID:17222907; http://dx.doi.org/10.1016/j.dci.2006.11.010
  • Brogden G, Krimmling T, Adamek M, Naim HY, Steinhagen D, von Köckritz-Blickwede M. The effect of β-glucan on formation and functionality of neutrophil extracellular traps in carp(Cyprinus carpio L.). Dev Comp Immunol 2014; 44:280-5; PMID:24434196; http://dx.doi.org/10.1016/j.dci.2014.01.003
  • Yipp BG, Kubes P. NETosis: how vital is it? Blood 2013; 122:2784-94; PMID:24009232; http://dx.doi.org/10.1182/blood-2013-04-457671
  • Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, Feramisco J, Nizet V. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 2006; 16:396-400; PMID:16488874; http://dx.doi.org/10.1016/j.cub.2005.12.039
  • Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, McArthur JD, Dinkla K, Aziz RK, Kansal RG, et al. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 2007; 13:981-5; PMID:17632528; http://dx.doi.org/10.1038/nm1612
  • Chang A, Khemlani A, Kang H, Proft T. Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor. Mol Microbiol 2011; 79:629-42; PMID:21231972
  • Pridgeon JW, Klesius PH, Song L, Zhang D, Kojima K, Mobley JA. Identification, virulence, and mass spectrometry of toxic ECP fractions of West Alabama isolates of Aeromonas hydrophila obtained from a 2010 disease outbreak. Vet Microbiol 2013; 164:336-43; PMID:23523171; http://dx.doi.org/10.1016/j.vetmic.2013.02.020
  • Buchmann K. Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. Front Immunol 2014; 5:459; PMID:25295041; http://dx.doi.org/10.3389/fimmu.2014.00459
  • Yu HB, Zhang YL, Lau YL, Yao F, Vilches S, Merino S, Tomas JM, Howard SP, Leung KY. Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91. Appl Environ Microbiol 2005; 71:4469-77; PMID:16085838; http://dx.doi.org/10.1128/AEM.71.8.4469-4477.2005
  • Sha J, Wang SF, Suarez G, Sierra JC, Fadl AA, Erova TE, Foltz SM, Khajanchi BK, Silver A, Graf J, et al. Further characterization of a type III secretion system (T3SS) and of a new effector protein from a clinical isolate of Aeromonas hydrophila - part I. Microb Pathog 2007; 43:127-46; PMID:17644303; http://dx.doi.org/10.1016/j.micpath.2007.05.002
  • Sierra JC, Suarez G, Sha J, Foltz SM, Popov VL, Galindo CL, Garner HR, Chopra AK. Biological characterization of a new type III secretion system effector from a clinical isolate of Aeromonas hydrophila-part II. Microb Pathog 2007; 43:147-60; PMID:17582731; http://dx.doi.org/10.1016/j.micpath.2007.05.003
  • Suarez G, Sierra JC, Kirtley ML, Chopra AK. Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. Microbiology 2010; 36:78-88; PMID:20798163
  • Abolghait SK, Akeda Y, Kodama T, Cantarelli VV, Iida T, Honda T. Aeromonas hydrophila PepO outer membrane endopeptidase activates human big endothelin-3 in vitro and induces skin ulcer in goldfish (Carassius auratus). Vet Microbiol 2010; 145:113-21; PMID:20456877; http://dx.doi.org/10.1016/j.vetmic.2010.03.009
  • Suarez G, Khajanchi BK, Sierra JC, Erova TE, Sha J, Chopra AK. Actin cross-linking domain of Aeromonas hydrophila repeat in toxin A (RtxA) induces host cell rounding and apoptosis. Gene 2012; 506:369-76; PMID:22814176; http://dx.doi.org/10.1016/j.gene.2012.07.012
  • Qin Y, Lin G, Chen W, Huang B, Huang W, Yan Q. Flagellar motility contributes to the invasion and survival of Aeromonas hydrophila in Anguilla japonica macrophages. Fish Shellfish Immunol 2014; 39:273-9; PMID:24859591; http://dx.doi.org/10.1016/j.fsi.2014.05.016
  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004; 303:1532-35; PMID:15001782; http://dx.doi.org/10.1126/science.1092385
  • Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176:231-41; PMID:17210947; http://dx.doi.org/10.1083/jcb.200606027
  • Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191:677-91; PMID:20974816; http://dx.doi.org/10.1083/jcb.201006052
  • Uchiyama S, Andreoni F, Schuepbach RA, Nizet V, Zinkernagel AS. DNase Sda1 allows invasive M1T1 group A Streptococcus to prevent TLR9-dependent recognition. PLoS Pathog 2012; 8:e1002736; PMID:22719247; http://dx.doi.org/10.1371/journal.ppat.1002736
  • Wartha F, Beiter K, Normark S, Henriques-Normark B. Neutrophil extracellular traps: casting the NET over pathogenesis. Curr Opin Microbiol 2007; 10:52-6; PMID:17208512; http://dx.doi.org/10.1016/j.mib.2006.12.005
  • Finkel SE, Kolter R. DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 2001; 183:6288-93; PMID:11591672; http://dx.doi.org/10.1128/JB.183.21.6288-6293.2001
  • Blokesch M, Schoolnik GK. The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae. J Bacteriol 2008; 190:7232-40; PMID:18757542; http://dx.doi.org/10.1128/JB.00959-08
  • Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2010; 2:576-86; PMID:20829609; http://dx.doi.org/10.1159/000319909
  • Wang N, Yang Z, Zang M, Liu Y, Lu C. Identification of Omp38 by immunoproteomic analysis and evaluation as a potential vaccine antigen against Aeromonas hydrophila in Chinese breams. Fish Shellfish Immunol 2013; 34(1):74-81; PMID:23063539; http://dx.doi.org/10.1016/j.fsi.2012.10.003
  • Liu L, Zhou Y, Zhao X, Wang H, Wang L, Yuan G, Asim M, Wang W, Zeng L, Liu X, et al. Oligochitosan stimulated phagocytic activity of macrophages from blunt snout bream (Megalobrama amblycephala) associated with respiratory burst coupled with nitric oxide production. Dev Comp Immunol 2014; 47:17-24; PMID:24968077; http://dx.doi.org/10.1016/j.dci.2014.06.005
  • Pian Y, Gan S, Wang S, Guo J, Wang P, Zheng Y, Cai X, Jiang Y, Yuan Y. Fhb, a novel factor H-binding surface protein, contributes to the antiphagocytic ability and virulence of Streptococcus suis. Infect Immun 2012; 80:2402-13; PMID:22526676; http://dx.doi.org/10.1128/IAI.06294-11
  • Zheng C, Xu J, Li J, Hu L, Xia J, Fan J, Guo W, Chen H, Bei W. Two Spx regulators modulate stress tolerance and virulence in Streptococcus suis serotype 2. PLoS One 2014; 9:e108197; PMID:25264876; http://dx.doi.org/10.1371/journal.pone.0108197
  • Li J, Zhu H, Feng W, Liu M, Song Y, Zhang X, Zhou Y, Bei W, Lei B. Regulation of inhibition of neutrophil infiltration by the two-component regulatory system CovRS in subcutaneous murine infection with group A Streptococcus. Infect Immun 2013; 81:974-83; PMID:23319556; http://dx.doi.org/10.1128/IAI.01218-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.