759
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Contribution of murine IgG Fc regions to antibody binding to the capsule of Burkholderia pseudomallei

, , , , , , , & show all
Pages 691-701 | Received 04 Sep 2015, Accepted 04 Apr 2016, Published online: 17 May 2016

References

  • Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, Wongsuvan G, Chaisuksant S, Chetchotisakd P, Chaowagul W, Day NP, Peacock SJ. Increasing incidence of human melioidosis in Northeast Thailand. Am J Trop Med Hyg 2010; 82:1113-7; PMID:20519609; http://dx.doi.org/10.4269/ajtmh.2010.10-0038
  • Reckseidler SL, DeShazer D, Sokol PA, Woods DE. Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect Immun 2001; 69:34-44; PMID:11119486; http://dx.doi.org/10.1128/IAI.69.1.34-44.2001
  • Limmathurotsakul D, Golding N, Dance D, Messina JP, Pigott DM, Moyes CL, Rolim DB, Bertherat E, Day NP, Peacock SJ, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nature Microbiology 2016; 1.
  • Reckseidler-Zenteno SL, DeVinney R, Woods DE. The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect Immun 2005; 73:1106-15; PMID:15664954; http://dx.doi.org/10.1128/IAI.73.2.1106-1115.2005
  • Shaw BM, Daubenspeck JM, Simmons WL, Dybvig K. EPS-I polysaccharide protects Mycoplasma pulmonis from phagocytosis. FEMS Microbiol Lett 2013; 338:155-60; PMID:23190331; http://dx.doi.org/10.1111/1574-6968.12048
  • Lemire P, Houde M, Lecours MP, Fittipaldi N, Segura M. Role of capsular polysaccharide in Group B Streptococccus interactions with dendritic cells. Microbes Infect 2012; 14:1064-76; PMID:22683668; http://dx.doi.org/10.1016/j.micinf.2012.05.015
  • Melin M, Jarva H, Siira L, Meri S, Kayhty H, Vakevainen M. Streptococcus pneumoniae capsular serotype 19F is more resistant to C3 deposition and less sensitive to opsonophagocytosis than serotype 6B. Infect Immun 2009; 77:676-84; PMID:19047408; http://dx.doi.org/10.1128/IAI.01186-08
  • Agarwal S, Vasudhev S, DeOliveira RB, Ram S. Inhibition of the classical pathway of complement by meningococcal capsular polysaccharides. J Immunol 2014; 193:1855-63; PMID:25015832; http://dx.doi.org/10.4049/jimmunol.1303177
  • Berti F, Campisi E, Toniolo C, Morelli L, Crotti S, Rosini R, Romano MR, Pinto V, Brogioni B, Torricelli G, et al. Structure of the type IX group B Streptococcus capsular polysaccharide and its evolutionary relationship with types V and VII. J Biol Chem 2014; 289:23437-48; PMID:24990951; http://dx.doi.org/10.1074/jbc.M114.567974
  • Xie O, Bolgiano B, Gao F, Lockyer K, Swann C, Jones C, Delrieu I, Njanpop-Lafourcade BM, Tamekloe TA, Pollard AJ, et al. Characterization of size, structure and purity of serogroup X Neisseria meningitidis polysaccharide, and development of an assay for quantification of human antibodies. Vaccine 2012; 30:5812-23; PMID:22835740; http://dx.doi.org/10.1016/j.vaccine.2012.07.032
  • Bruckner V, Kovacs J, Denes G. Structure of poly-D-glutamic acid isolated from capsulated strains of B. anthracis. Nature 1953; 172:508; PMID:13099252; http://dx.doi.org/10.1038/172508a0
  • Heiss C, Burtnick MN, Wang Z, Azadi P, Brett PJ. Structural analysis of capsular polysaccharides expressed by Burkholderia mallei and Burkholderia pseudomallei. Carbohydrate research 2012; 349:90-4; PMID:22221792; http://dx.doi.org/10.1016/j.carres.2011.12.011
  • Perry MB, MacLean LL, Schollaardt T, Bryan LE, Ho M. Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei. Infect Immun 1995; 63:3348-52; PMID:7543882
  • Warawa JM, Long D, Rosenke R, Gardner D, Gherardini FC. Role for the Burkholderia pseudomallei capsular polysaccharide encoded by the wcb operon in acute disseminated melioidosis. Infect Immun 2009; 77:5252-5261; PMID:19752033; http://dx.doi.org/10.1128/IAI.00824-09
  • Atkins T, Prior R, Mack K, Russell P, Nelson M, Prior J, Ellis J, Oyston PC, Dougan G, Titball RW. Characterisation of an acapsular mutant of Burkholderia pseudomallei identified by signature tagged mutagenesis. J Med Microbiol 2002; 51:539-47; PMID:12132769; http://dx.doi.org/10.1099/0022-1317-51-7-539
  • Wikraiphat C, Charoensap J, Utaisincharoen P, Wongratanacheewin S, Taweechaisupapong S, Woods DE, Bolscher JG, Sirisinha S. Comparative in vivo and in vitro analyses of putative virulence factors of Burkholderia pseudomallei using lipopolysaccharide, capsule and flagellin mutants. FEMS Immunol Med Microbiol 2009; 56:253-9; PMID:19549172; http://dx.doi.org/10.1111/j.1574-695X.2009.00574.x
  • Parker DC. T cell-dependent B cell activation. Annu Rev Immunol 1993; 11:331-60; PMID:8476565; http://dx.doi.org/10.1146/annurev.iy.11.040193.001555
  • Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev 2000; 176:154-70; PMID:11043775; http://dx.doi.org/10.1034/j.1600-065X.2000.00607.x
  • Claesson BA, Trollfors B, Lagergard T, Taranger J, Bryla D, Otterman G, Cramton T, Yang Y, Reimer CB, Robbins JB, et al. Clinical and immunologic responses to the capsular polysaccharide of Haemophilus influenzae type b alone or conjugated to tetanus toxoid in 18- to 23-month-old children. J Pediatr 1988; 112:695-702; PMID:3361379; http://dx.doi.org/10.1016/S0022-3476(88)80684-X
  • Beuvery EC, Miedema F, van Delft R, Haverkamp J. Preparation and immunochemical characterization of meningococcal group C polysaccharide-tetanus toxoid conjugates as a new generation of vaccines. Infect Immun 1983; 40:39-45; PMID:6187693
  • Burtnick MN, Heiss C, Roberts RA, Schweizer HP, Azadi P, Brett PJ. Development of capsular polysaccharide-based glycoconjugates for immunization against melioidosis and glanders. Front Cell Infect Microbiol 2012; 2:108; PMID:22912938
  • Perlmutter RM, Hansburg D, Briles DE, Nicolotti RA, Davie JM. Subclass restriction of murine anti-carbohydrate antibodies. J Immunol 1978; 121:566-72; PMID:79606
  • Slack J, Der-Balian GP, Nahm M, Davie JM. Subclass restriction of murine antibodies. II. The IgG plaque-forming cell response to thymus-independent type 1 and type 2 antigens in normal mice and mice expressing an X-linked immunodeficiency. J Exp Med 1980; 151:853-62; PMID:6966310; http://dx.doi.org/10.1084/jem.151.4.853
  • Hansburg D, Perlmutter RM, Briles DE, Davie JM. Analysis of the diversity of murine antibodies to dextran B1355. III. Idiotypic and spectrotypic correlations. Eur J Immunol 1978; 8:352-9; PMID:689075; http://dx.doi.org/10.1002/eji.1830080512
  • Spira G, Bargellesi A, Teillaud JL, Scharff MD. The identification of monoclonal class switch variants by sib selection and an ELISA assay. J Immunol Methods 1984; 74:307-15; PMID:6438240; http://dx.doi.org/10.1016/0022-1759(84)90298-9
  • Hovenden M, Hubbard MA, AuCoin DP, Thorkildson P, Reed DE, Welch WH, Lyons CR, Lovchik JA, Kozel TR. IgG subclass and heavy chain domains contribute to binding and protection by mAbs to the poly gamma-D-glutamic acid capsular antigen of Bacillus anthracis. PLoS Pathog 2013; 9:e1003306; PMID:23637599; http://dx.doi.org/10.1371/journal.ppat.1003306
  • AuCoin DP, Reed DE, Marlenee NL, Bowen RA, Thorkildson P, Judy BM, Torres AG, Kozel TR. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei. PLoS One 2012; 7:e35386; PMID:22530013; http://dx.doi.org/10.1371/journal.pone.0035386
  • Cooper LJ, Schimenti JC, Glass DD, Greenspan NS. H chain C domains influence the strength of binding of IgG for streptococcal group A carbohydrate. J Immunol 1991; 146:2659-63; PMID:1901882
  • Cooper LJ, Robertson D, Granzow R, Greenspan NS. Variable domain-identical antibodies exhibit IgG subclass-related differences in affinity and kinetic constants as determined by surface plasmon resonance. Mol Immunol 1994; 31:577-84; PMID:7515151; http://dx.doi.org/10.1016/0161-5890(94)90165-1
  • Schreiber JR, Cooper LJ, Diehn S, Dahlhauser PA, Tosi MF, Glass DD, Patawaran M, Greenspan NS. Variable region-identical monoclonal antibodies of different IgG subclass directed to Pseudomonas aeruginosa lipopolysaccharide O-specific side chain function differently. J Infect Dis 1993; 167:221-6; PMID:8418172; http://dx.doi.org/10.1093/infdis/167.1.221
  • Kozel TR, Murphy WJ, Brandt S, Blazar BR, Lovchik JA, Thorkildson P, Percival A, Lyons CR. mAbs to Bacillus anthracis capsular antigen for immunoprotection in anthrax and detection of antigenemia. Proc Natl Acad Sci U S A 2004; 101:5042-7; PMID:15051894; http://dx.doi.org/10.1073/pnas.0401351101
  • Nuti DE, Crump RB, Dwi Handayani F, Chantratita N, Peacock SJ, Bowen R, Felgner PL, Davies DH, Wu T, Lyons CR, et al. Identification of circulating bacterial antigens by in vivo microbial antigen discovery. mBio 2011; 2.
  • Kozel TR, Hermerath CA. Benzoquinone activation of Cryptococcus neoformans capsular polysaccharide for construction of an immunoaffinity column. J Immunol Methods 1988; 107:53-8; PMID:3125258; http://dx.doi.org/10.1016/0022-1759(88)90008-7
  • Houghton RL, Reed DE, Hubbard MA, Dillon MJ, Chen H, Currie, BJ, Mayo M, Sarovich D, Theobald V, Limmathurotsakul D, et al. Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis. PLoS Negl Trop Dis 2014; 8:e2727; PMID:24651568; In Press.
  • DeShazer D, Waag DM, Fritz DL, Woods DE. Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microb Pathog 2001; 30:253-69; PMID:11373120; http://dx.doi.org/10.1006/mpat.2000.0430
  • Crisel RM, Baker RS, Dorman DE. Capsular polymer of Haemophilus influenzae, type b. I. Structural characterization of the capsular polymer of strain Eagan. J Biol Chem 1975; 250:4926-30; PMID:1080151
  • DeVoe IW. The meningococcus and mechanisms of pathogenicity. Microbiol Rev 1982; 46:162-90; PMID:6126800
  • Cherniak R, Valafar H, Morris LC, Valafar F. Cryptococcus neoformans chemotyping by quantitative analysis of 1H nuclear magnetic resonance spectra of glucuronoxylomannans with a computer-simulated artificial neural network. Clin Diagn Lab Immunol 1998; 5:146-59; PMID:9521136
  • Zwartouw HT, Smith H. Polyglutamic acid from Bacillus anthracis grown in vivo; structure and aggressin activity. Biochem J 1956; 63:437-42; PMID:13341899; http://dx.doi.org/10.1042/bj0630437
  • Wilkinson JF. The extracellualr polysaccharides of bacteria. Bacteriol Rev 1958; 22:46-73; PMID:13522509
  • Kanaphun P, Thirawattanasuk N, Suputtamongkol Y, Naigowit P, Dance DA, Smith MD, White NJ. Serology and carriage of Pseudomonas pseudomallei: a prospective study in 1000 hospitalized children in northeast Thailand. J Infect Dis 1993; 167:230-33; PMID:7678106; http://dx.doi.org/10.1093/infdis/167.1.230
  • Feldmann M, Easten A. The relationship between antigenic structure and the requirement for thymus-derived cells in the immune response. J Exp Med 1971; 134:103-19; PMID:4104294; http://dx.doi.org/10.1084/jem.134.1.103
  • Scott MG, Shackelford PG, Briles DE, Nahm MH. Human IgG subclasses and their relation to carbohydrate antigen immunocompetence. Diagn Clin Immunol 1988; 5:241-8; PMID:3282712
  • Beenhouwer DO, Yoo EM, Lai CW, Rocha MA, Morrison SL. Human immunoglobulin G2 (IgG2) and IgG4, but not IgG1 or IgG3, protect mice against Cryptococcus neoformans infection. Infect Immun 2007; 75:1424-35; PMID:17220317; http://dx.doi.org/10.1128/IAI.01161-06
  • Yuan RR, Spira G, Oh J, Paizi M, Casadevall A, Scharff MD. 1998. Isotype switching increases efficacy of antibody protection against Cryptococcus neoformans infection in mice. Infect Immun 2007; 66:1057-62; PMID:9488395
  • Hubbard MA, Thorkildson P, Kozel TR, AuCoin DP. Constant domains influence binding of mouse-human chimeric antibodies to the capsular polypeptide of Bacillus anthracis. Virulence 2013; 4:483-8; PMID:23863605; http://dx.doi.org/10.4161/viru.25711
  • Jones SM, Ellis JF, Russell P, Griffin KF, Oyston PC. Passive protection against Burkholderia pseudomallei infection in mice by monoclonal antibodies against capsular polysaccharide, lipopolysaccharide or proteins. J Med Microbiol 2002; 51:1055-62; PMID:12466403; http://dx.doi.org/10.1099/0022-1317-51-12-1055
  • Zhang S, Feng SH, Li B, Kim HY, Rodriguez J, Tsai S, Lo SC. In vitro and in vivo studies of monoclonal antibodies with prominent bactericidal activity against burkholderia pseudomallei and burkholderia mallei. Clin Vaccine Immunol 2011; 18:825-34; PMID:21450976; http://dx.doi.org/10.1128/CVI.00533-10
  • Bottex C, Gauthier YP, Hagen RM, Finke EJ, Splettstosser WD, Thibault FM, Neubauer H, Vidal DR. Attempted passive prophylaxis with a monoclonal anti-Burkholderia pseudomallei exopolysaccharide antibody in a murine model of melioidosis. Immunopharmacol Immunotoxicol 2005; 27:565-83; PMID:16435577; http://dx.doi.org/10.1080/08923970500493995
  • Nelson M, Prior JL, Lever MS, Jones HE, Atkins TP, Titball RW. Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis. J Med Microbiol 2004; 53:1177-82; PMID:15585494; http://dx.doi.org/10.1099/jmm.0.45766-0
  • Brett PJ, Woods DE. Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide-flagellin protein conjugates. Infect Immun 1996; 64:2824-8; PMID:8698517
  • Bryan LE, Wong S, Woods DE, Dance DA, Chaowagul W. Passive protection of diabetic rats with antisera specific for the polysaccharide portion of the lipopolysaccharide isolated from Pseudomonas pseudomallei. Can J Infect Dis 1994; 5:170-8; PMID:22346496; http://dx.doi.org/10.1155/1994/856850
  • Janda A, Eryilmaz E, Nakouzi A, Cowburn D, Casadevall A. Variable region identical immunoglobulins differing in isotype express different paratopes. J Biol Chem 2012; 287:35409-17; PMID:22930758; http://dx.doi.org/10.1074/jbc.M112.404483
  • Pritsch O, Hudry-Clergeon G, Buckle M, Petillot Y, Bouvet JP, Gagnon J, Dighiero G. Can immunoglobulin C(H)1 constant region domain modulate antigen binding affinity of antibodies? J Clin Invest 1996; 98:2235-43; PMID:8941639

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.