3,201
Views
25
CrossRef citations to date
0
Altmetric
Research Paper

Pathophysiological mechanisms of diarrhea caused by the Vibrio cholerae O1 El Tor variant: an in vivo study in mice

, , , &
Pages 789-805 | Received 11 Jan 2016, Accepted 16 May 2016, Published online: 17 Jun 2016

References

  • Sack DA, Sack RB, Nair GB, Siddique AK. Cholera. Lancet 2004; 363:223-33; PMID:14738797; http://dx.doi.org/10.1016/S0140-6736(03)15328-7
  • Muanprasat C, Chatsudthipong V. Cholera: pathophysiology and emerging therapeutic targets. Future Med Chem 2013; 5:781-98; PMID:23651092; http://dx.doi.org/10.4155/fmc.13.42
  • Bart KJ, Huq Z, Khan M, Mosley WH. Seroepidemiologic studies during a simultaneous epidemic of infection with El Tor Ogawa and classical Inaba Vibrio cholerae. J Infect Dis 1970; 121:Suppl 121:17+; PMID:4912068; http://dx.doi.org/10.1093/infdis/121.Supplement.S17
  • Samadi AR, Huq MI, Shahid N, Khan MU, Eusof A, Rahman AS, Yunus M, Faruque AS. Classical Vibrio cholerae biotype displaces EL tor in Bangladesh. Lancet 1983; 1:805-7; PMID:6132141; http://dx.doi.org/10.1016/S0140-6736(83)91860-3
  • Nair GB, Faruque SM, Bhuiyan NA, Kamruzzaman M, Siddique AK, Sack DA. New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 2002; 40:3296-9; PMID:12202569; http://dx.doi.org/10.1128/JCM.40.9.3296-3299.2002
  • Na-Ubol M, Srimanote P, Chongsa-Nguan M, Indrawattana N, Sookrung N, Tapchaisri P, Yamazaki S, Bodhidatta L, Eampokalap B, Kurazono H, et al. Hybrid & El Tor variant biotypes of Vibrio cholerae O1 in Thailand. Indian J Med research 2011; 133:387-94; PMID:21537091
  • Schwartz BS, Harris JB, Khan AI, Larocque RC, Sack DA, Malek MA, Faruque AS, Qadri F, Calderwood SB, Luby SP, et al. Diarrheal epidemics in Dhaka, Bangladesh, during three consecutive floods: 1988, 1998, and 2004. Am J Trop Med Hygiene 2006; 74:1067-73; PMID:16760521
  • Siddique AK, Nair GB, Alam M, Sack DA, Huq A, Nizam A, Longini IM, Jr., Qadri F, Faruque SM, Colwell RR, et al. El Tor cholera with severe disease: a new threat to Asia and beyond. Epidemiol Infect 2010; 138:347-52; PMID:19678971; http://dx.doi.org/10.1017/S0950268809990550
  • Harris AM, Chowdhury F, Begum YA, Khan AI, Faruque AS, Svennerholm AM, Harris JB, Ryan ET, Cravioto A, Calderwood SB, et al. Shifting prevalence of major diarrheal pathogens in patients seeking hospital care during floods in 1998, 2004, and 2007 in Dhaka, Bangladesh. Am J Trop Med Hygiene 2008; 79:708-14; PMID:18981509
  • Ghosh-Banerjee J, Senoh M, Takahashi T, Hamabata T, Barman S, Koley H, Mukhopadhyay AK, Ramamurthy T, Chatterjee S, Asakura M, et al. Cholera toxin production by the El Tor variant of Vibrio cholerae O1 compared to prototype El Tor and classical biotypes. J Clin Microbiol 2010; 48:4283-6; PMID:20810767; http://dx.doi.org/10.1128/JCM.00799-10
  • Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 2000; 62:535-72; PMID:10845102; http://dx.doi.org/10.1146/annurev.physiol.62.1.535
  • Thiagarajah JR, Verkman AS. CFTR inhibitors for treating diarrheal disease. Clin Pharmacol Therapeut 2012; 92:287-90; PMID:22850599; http://dx.doi.org/10.1038/clpt.2012.114
  • Field M. Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 2003; 111:931-43; PMID: 12671039; http://dx.doi.org/10.1172/JCI200318326
  • Sawasvirojwong S, Srimanote P, Chatsudthipong V, Muanprasat C. An Adult Mouse Model of -induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera. PLoS Neglected Trop Dis 2013; 7:e2293; http://dx.doi.org/10.1371/journal.pntd.0002293
  • Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta 2009; 1788:832-41; PMID:19059200; http://dx.doi.org/10.1016/j.bbamem.2008.10.028
  • Ellis CN, LaRocque RC, Uddin T, Krastins B, Mayo-Smith LM, Sarracino D, Karlsson EK, Rahman A, Shirin T, Bhuiyan TR, et al. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera. Infect Immun 2015; 83:1089-103; PMID:25561705; http://dx.doi.org/10.1128/IAI.02765-14
  • Das T, Mukherjee S, Chaudhuri K. Effect of quercetin on Vibrio cholerae induced nuclear factor-kappaB activation and interleukin-8 expression in intestinal epithelial cells. Microbes and infection / Institut Pasteur 2012; 14:690-5; PMID:22421109; http://dx.doi.org/10.1016/j.micinf.2012.02.007
  • Bandyopadhaya A, Das D, Chaudhuri K. Involvement of intracellular signaling cascades in inflammatory responses in human intestinal epithelial cells following Vibrio cholerae infection. Mol Immunol 2009; 46:1129-39; PMID:19110311; http://dx.doi.org/10.1016/j.molimm.2008.11.003
  • Thiagarajah JR, Broadbent T, Hsieh E, Verkman AS. Prevention of toxin-induced intestinal ion and fluid secretion by a small-molecule CFTR inhibitor. Gastroenterology 2004; 126:511-9; PMID:14762788; http://dx.doi.org/10.1053/j.gastro.2003.11.005
  • Thiagarajah JR, Ko EA, Tradtrantip L, Donowitz M, Verkman AS. Discovery and development of antisecretory drugs for treating diarrheal diseases. Clin Gastroenterol Hepatol 2014; 12:204-9; PMID:24316107; http://dx.doi.org/10.1016/j.cgh.2013.12.001
  • Ko EA, Jin BJ, Namkung W, Ma T, Thiagarajah JR, Verkman AS. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice. Gut 2014; 63:1120-9; PMID:24052273; http://dx.doi.org/10.1136/gutjnl-2013-305663
  • Resta-Lenert S, Barrett KE. Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Gastroenterology 2002; 122:1070-87; PMID:11910358; http://dx.doi.org/10.1053/gast.2002.32372
  • Izzo AA, Mascolo N, Capasso F. Nitric oxide as a modulator of intestinal water and electrolyte transport. Dig Dis Sci 1998; 43:1605-20; PMID:9724140; http://dx.doi.org/10.1023/A:1018887525293
  • van der Merwe JQ, Ohland CL, Hirota CL, MacNaughton WK. Prostaglandin E2 derived from cyclooxygenases 1 and 2 mediates intestinal epithelial ion transport stimulated by the activation of protease-activated receptor 2. J Pharmacol Exp Therapeut 2009; 329:747-52; PMID:19190238; http://dx.doi.org/10.1124/jpet.108.145466
  • Yang CW, Yu CC, Ko YC, Huang CC. Aminoguanidine reduces glomerular inducible nitric oxide synthase (iNOS) and transforming growth factor-beta 1 (TGF-beta1) mRNA expression and diminishes glomerulosclerosis in NZB/W F1 mice. Clin Exp Immunol 1998; 113:258-64; PMID:9717976; http://dx.doi.org/10.1046/j.1365-2249.1998.00632.x
  • Clancy RM, Gomez PF, Abramson SB. Nitric oxide sustains nuclear factor kappaB activation in cytokine-stimulated chondrocytes. Osteoarthritis Cartilage 2004; 12:552-8; PMID:15219570; http://dx.doi.org/10.1016/j.joca.2004.04.003
  • Dey I, Lejeune M, Chadee K. Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol 2006; 149:611-23; PMID:17016496; http://dx.doi.org/10.1038/sj.bjp.0706923
  • Hoque KM, Woodward OM, van Rossum DB, Zachos NC, Chen L, Leung GP, Guggino WB, Guggino SE, Tse CM. Epac1 mediates protein kinase A-independent mechanism of forskolin-activated intestinal chloride secretion. J Gen Physiol 2010; 135:43-58; PMID:20038525; http://dx.doi.org/10.1085/jgp.200910339
  • Worrell RT, Frizzell RA. CaMKII mediates stimulation of chloride conductance by calcium in T84 cells. Am J Physiol 1991; 260:C877-82; PMID:1708204
  • Guichard A, Cruz-Moreno B, Aguilar B, van Sorge NM, Kuang J, Kurkciyan AA, Wang Z, Hang S, Pineton de Chambrun GP, McCole DF, et al. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe 2013; 14:294-305; PMID:24034615; http://dx.doi.org/10.1016/j.chom.2013.08.001
  • Phongsisay V, Iizasa E, Hara H, Yoshida H. Evidence for TLR4 and FcRgamma-CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors. Mol Immunol 2015; 66:463-71; PMID:26021803; http://dx.doi.org/10.1016/j.molimm.2015.05.008
  • Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 2013; 182:375-87; PMID:23201091; http://dx.doi.org/10.1016/j.ajpath.2012.10.014
  • Gribar SC, Anand RJ, Sodhi CP, Hackam DJ. The role of epithelial Toll-like receptor signaling in the pathogenesis of intestinal inflammation. J Leukoc biol 2008; 83:493-8; PMID:18160540; http://dx.doi.org/10.1189/jlb.0607358
  • Son MS, Megli CJ, Kovacikova G, Qadri F, Taylor RK. Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes. J Clin Microbiol 2011; 49:3739-49; PMID:21880975; http://dx.doi.org/10.1128/JCM.01286-11
  • Dharmsathaphorn K, Pandol SJ. Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J Clin Invest 1986; 77:348-54; PMID:3003156; http://dx.doi.org/10.1172/JCI112311
  • Cartwright CA, McRoberts JA, Mandel KG, Dharmsathaphorn K. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line. J Clin Invest 1985; 76:1837-42; PMID:2997291; http://dx.doi.org/10.1172/JCI112176
  • Harrison LM, Rallabhandi P, Michalski J, Zhou X, Steyert SR, Vogel SN, Kaper JB. Vibrio cholerae flagellins induce Toll-like receptor 5-mediated interleukin-8 production through mitogen-activated protein kinase and NF-kappaB activation. Infect Immun 2008; 76:5524-34; PMID:18809662; http://dx.doi.org/10.1128/IAI.00843-08
  • Kim KJ, Kim HA, Seo KH, Lee HK, Kang BY, Im SY. Cholera toxin breakdowns oral tolerance via activation of canonical NF-kappaB. Cell Immunol 2013; 285:92-9; PMID:24140867; http://dx.doi.org/10.1016/j.cellimm.2013.09.006
  • Schnitzler AC, Burke JM, Wetzler LM. Induction of cell signaling events by the cholera toxin B subunit in antigen-presenting cells. Infect Immun 2007; 75:3150-9; PMID:17353279; http://dx.doi.org/10.1128/IAI.00581-06
  • Wands AM, Fujita A, McCombs JE, Cervin J, Dedic B, Rodriguez AC, Nischan N, Bond MR, Mettlen M, Trudgian DC, et al. Fucosylation and protein glycosylation create functional receptors for cholera toxin. eLife 2015; 4:e09545; PMID:26512888; http://dx.doi.org/10.7554/eLife.09545
  • Borghan MA, Mori Y, El-Mahmoudy AB, Ito N, Sugiyama M, Takewaki T, Minamoto N. Induction of nitric oxide synthase by rotavirus enterotoxin NSP4: implication for rotavirus pathogenicity. J Gen Virol 2007; 88:2064-72; PMID:17554041; http://dx.doi.org/10.1099/vir.0.82618-0
  • Keller SA, Hernandez-Hopkins D, Vider J, Ponomarev V, Hyjek E, Schattner EJ, Cesarman E. NF-kappaB is essential for the progression of KSHV- and EBV-infected lymphomas in vivo. Blood 2006; 107:3295-302; PMID:16380446; http://dx.doi.org/10.1182/blood-2005-07-2730
  • Kang KM, Lee GS, Lee JH, Choi IW, Shin DW, Lee YH. Effects of iNOS inhibitor on IFN-gamma production and apoptosis of splenocytes in genetically different strains of mice infected with Toxoplasma gondii. Korean J Parasitol 2004; 42:175-83; PMID:15591835; http://dx.doi.org/10.3347/kjp.2004.42.4.175
  • Azari MF, Profyris C, Le Grande MR, Lopes EC, Hirst J, Petratos S, Cheema SS. Effects of intraperitoneal injection of Rofecoxib in a mouse model of ALS. Eur J Neurol 2005; 12:357-64; PMID:15804265; http://dx.doi.org/10.1111/j.1468-1331.2004.00987.x
  • Shakhnovich EA, Hung DT, Pierson E, Lee K, Mekalanos JJ. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc Natl Acad Sci U S A 2007; 104:2372-7; PMID:17283330; http://dx.doi.org/10.1073/pnas.0611643104
  • Yoon YS, Kim SY, Kim MJ, Lim JH, Cho MS, Kang JL. PPARgamma activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol 2015; 8:1031-46; PMID:25586556; http://dx.doi.org/10.1038/mi.2014.130
  • Shamir D, Keila S, Weinreb M. A selective EP4 receptor antagonist abrogates the stimulation of osteoblast recruitment from bone marrow stromal cells by prostaglandin E2 in vivo and in vitro. Bone 2004; 34:157-62; PMID:14751573; http://dx.doi.org/10.1016/j.bone.2003.09.008
  • Colasanti M, Persichini T, Menegazzi M, Mariotto S, Giordano E, Caldarera CM, Sogos V, Lauro GM, Suzuki H. Induction of nitric oxide synthase mRNA expression. Suppression by exogenous nitric oxide. J Biol Chem 1995; 270:26731-3; PMID:7592903; http://dx.doi.org/10.1074/jbc.270.45.26731

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.