2,005
Views
16
CrossRef citations to date
0
Altmetric
Review

Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies

&
Pages 950-966 | Received 19 May 2016, Accepted 26 Aug 2016, Published online: 29 Sep 2016

References

  • Dagenais TR, Keller NP. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 2009; 22:447-65; PMID:19597008; http://dx.doi.org/10.1128/CMR.00055-08
  • Latge JP. The pathobiology of Aspergillus fumigatus. Trends Microbiol 2001; 9:382-9; PMID:11514221; http://dx.doi.org/10.1016/S0966-842X(01)02104-7
  • Zelante T, Bozza S, De Luca A, D'Angelo C, Bonifazi P, Moretti S, Giovannini G, Bistoni F, Romani L. Th17 cells in the setting of Aspergillus infection and pathology. Med Mycol 2009; 47 Suppl 1:S162-9; PMID:18608926; http://dx.doi.org/10.1080/13693780802140766
  • Bhabhra R, Askew DS. Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus. Med Mycol 2005; 43 Suppl 1:S87-93; http://dx.doi.org/10.1080/13693780400029486
  • Segal BH, Walsh TJ. Current approaches to diagnosis and treatment of invasive aspergillosis. Am J Respir Crit Care Med 2006; 173:707-17; PMID:16387806; http://dx.doi.org/10.1164/rccm.200505-727SO
  • McNeil MM, Nash SL, Hajjeh RA, Phelan MA, Conn LA, Plikaytis BD, Warnock DW. Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. Clin Infect Dis 2001; 33:641-7; PMID:11486286; http://dx.doi.org/10.1086/322606
  • Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA. Invasive aspergillosis following hematopoietic cell transplantation: outcomes and prognostic factors associated with mortality. Clin Infect Dis 2007; 44:531-40; PMID:17243056; http://dx.doi.org/10.1086/510592
  • Paterson DL, Singh N. Invasive aspergillosis in transplant recipients. Medicine (Baltimore) 1999; 78:123-38; PMID:10195093; http://dx.doi.org/10.1097/00005792-199903000-00003
  • Marks DI, Pagliuca A, Kibbler CC, Glasmacher A, Heussel CP, Kantecki M, Miller PJ, Ribaud P, Schlamm HT, Solano C, et al. Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation. Br J Haematol 2011; 155:318-27; PMID:21880032; http://dx.doi.org/10.1111/j.1365-2141.2011.08838.x
  • Wingard JR, Carter SL, Walsh TJ, Kurtzberg J, Small TN, Baden LR, Gersten ID, Mendizabal AM, Leather HL, Confer DL, et al. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood 2010; 116:5111-8; PMID:20826719; http://dx.doi.org/10.1182/blood-2010-02-268151
  • Segal BH. Aspergillosis. N Engl J Med 2009; 360:1870-84; PMID:19403905; http://dx.doi.org/10.1056/NEJMra0808853
  • Meersseman W, Lagrou K, Maertens J, Wilmer A, Hermans G, Vanderschueren S, Spriet I, Verbeken E, Van Wijngaerden E. Galactomannan in bronchoalveolar lavage fluid: a tool for diagnosing aspergillosis in intensive care unit patients. Am J Respir Crit Care Med 2008; 177:27-34; PMID:17885264; http://dx.doi.org/10.1164/rccm.200704-606OC
  • Chiang LY, Sheppard DC, Gravelat FN, Patterson TF, Filler SG. Aspergillus fumigatus stimulates leukocyte adhesion molecules and cytokine production by endothelial cells in vitro and during invasive pulmonary disease. Infect Immun 2008; 76:3429-38; PMID:18490455; http://dx.doi.org/10.1128/IAI.01510-07
  • Stergiopoulou T, Meletiadis J, Roilides E, Kleiner DE, Schaufele R, Roden M, Harrington S, Dad L, Segal B, Walsh TJ. Host-dependent patterns of tissue injury in invasive pulmonary aspergillosis. Am J Clin Pathol 2007; 127:349-55; PMID:17276936; http://dx.doi.org/10.1309/UJRV9DLC11RM3G8R
  • Nucci M, Nouer SA, Cappone D, Anaissie E. Early diagnosis of invasive pulmonary aspergillosis in hematologic patients: an opportunity to improve the outcome. Haematologica 2013; 98:1657-60; PMID:24186309; http://dx.doi.org/10.3324/haematol.2013.094359
  • Bergeron A, Porcher R, Sulahian A, de Bazelaire C, Chagnon K, Raffoux E, Vekhoff A, Cornet M, Isnard F, Brethon B, et al. The strategy for the diagnosis of invasive pulmonary aspergillosis should depend on both the underlying condition and the leukocyte count of patients with hematologic malignancies. Blood 2012; 119:1831-7; quiz 956; PMID:22010103; http://dx.doi.org/10.1182/blood-2011-04-351601
  • Xu XY, Sun HM, Zhao BL, Shi Y. Diagnosis of airway-invasive pulmonary aspergillosis by tree-in-bud sign in an immunocompetent patient: case report and literature review. J Mycol Med 2013; 23:64-9; PMID:23375859; http://dx.doi.org/10.1016/j.mycmed.2012.12.050
  • Cenci E, Mencacci A, Spreca A, Montagnoli C, Bacci A, Perruccio K, Velardi A, Magliani W, Conti S, Polonelli L, et al. Protection of killer antiidiotypic antibodies against early invasive aspergillosis in a murine model of allogeneic T-cell-depleted bone marrow transplantation. Infect Immun 2002; 70:2375-82; PMID:11953373; http://dx.doi.org/10.1128/IAI.70.5.2375-2382.2002
  • Sheppard DC, Rieg G, Chiang LY, Filler SG, Edwards JE, Jr, Ibrahim AS. Novel inhalational murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2004; 48:1908-11; PMID:15105158; http://dx.doi.org/10.1128/AAC.48.5.1908-1911.2004
  • Balloy V, Huerre M, Latge JP, Chignard M. Differences in patterns of infection and inflammation for corticosteroid treatment and chemotherapy in experimental invasive pulmonary aspergillosis. Infect Immun 2005; 73:494-503; PMID:15618189; http://dx.doi.org/10.1128/IAI.73.1.494-503.2005
  • Steinbach WJ, Benjamin DK, Jr, Trasi SA, Miller JL, Schell WA, Zaas AK, Foster WM, Perfect JR. Value of an inhalational model of invasive aspergillosis. Med Mycol 2004; 42:417-25; PMID:15552643; http://dx.doi.org/10.1080/13693780410001712034
  • Zaas AK, Liao G, Chien JW, Weinberg C, Shore D, Giles SS, Marr KA, Usuka J, Burch LH, Perera L, et al. Plasminogen alleles influence susceptibility to invasive aspergillosis. PLoS Genet 2008; 4:e1000101; PMID:18566672; http://dx.doi.org/10.1371/journal.pgen.1000101
  • Mircescu MM, Lipuma L, van Rooijen N, Pamer EG, Hohl TM. Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection. J Infect Dis 2009; 200:647-56; PMID:19591573; http://dx.doi.org/10.1086/600380
  • Mencacci A, Perruccio K, Bacci A, Cenci E, Benedetti R, Martelli MF, Bistoni F, Coffman R, Velardi A, Romani L. Defective antifungal T-helper 1 (TH1) immunity in a murine model of allogeneic T-cell-depleted bone marrow transplantation and its restoration by treatment with TH2 cytokine antagonists. Blood 2001; 97:1483-90; PMID:11222397; http://dx.doi.org/10.1182/blood.V97.5.1483
  • BitMansour A, Burns SM, Traver D, Akashi K, Contag CH, Weissman IL, Brown JM. Myeloid progenitors protect against invasive aspergillosis and Pseudomonas aeruginosa infection following hematopoietic stem cell transplantation. Blood 2002; 100:4660-7; PMID:12393415; http://dx.doi.org/10.1182/blood-2002-05-1552
  • Reddy P, Ferrara JLM. Mouse models of graft-versus-host disease. StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute, 2008; PMID: 20614594.
  • Schroeder MA, DiPersio JF. Mouse models of graft-versus-host disease: advances and limitations. Dis Model Mech 2011; 4:318-33; PMID:21558065; http://dx.doi.org/10.1242/dmm.006668
  • Leiva-Juarez MM, Ware HH, Kulkarni VV, Zweidler-McKay PA, Tuvim MJ, Evans SE. Inducible epithelial resistance protects mice against leukemia-associated pneumonia. Blood 2016; 128(7):982-92; PMID:27317793
  • Waring P, Eichner RD, Mullbacher A. The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines. Med Res Rev 1988; 8:499-524; PMID:2461498; http://dx.doi.org/10.1002/med.2610080404
  • Lewis RE, Wiederhold NP, Chi J, Han XY, Komanduri KV, Kontoyiannis DP, Prince RA. Detection of gliotoxin in experimental and human aspergillosis. Infect Immun 2005; 73:635-7; PMID:15618207; http://dx.doi.org/10.1128/IAI.73.1.635-637.2005
  • Pahl HL, Krauss B, Schulze-Osthoff K, Decker T, Traenckner EB, Vogt M, Myers C, Parks T, Warring P, Muhlbacher A, et al. The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB. J Exp Med 1996; 183:1829-40; PMID:8666939; http://dx.doi.org/10.1084/jem.183.4.1829
  • Tsunawaki S, Yoshida LS, Nishida S, Kobayashi T, Shimoyama T. Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 2004; 72:3373-82; PMID:15155643; http://dx.doi.org/10.1128/IAI.72.6.3373-3382.2004
  • Comera C, Andre K, Laffitte J, Collet X, Galtier P, Maridonneau-Parini I. Gliotoxin from Aspergillus fumigatus affects phagocytosis and the organization of the actin cytoskeleton by distinct signalling pathways in human neutrophils. Microbes Infect 2007; 9:47-54; PMID:17196420; http://dx.doi.org/10.1016/j.micinf.2006.10.009
  • Schlam D, Canton J, Carreno M, Kopinski H, Freeman SA, Grinstein S, Fairn GD. Gliotoxin suppresses macrophage immune function by subverting phosphatidylinositol 3,4,5-Trisphosphate Homeostasis. MBio 2016; 7:e02242; PMID:27048806; http://dx.doi.org/10.1128/mBio.02242-15
  • Orciuolo E, Stanzani M, Canestraro M, Galimberti S, Carulli G, Lewis R, Petrini M, Komanduri KV. Effects of Aspergillus fumigatus gliotoxin and methylprednisolone on human neutrophils: implications for the pathogenesis of invasive aspergillosis. J Leukoc Biol 2007; 82:839-48; PMID:17626149; http://dx.doi.org/10.1189/jlb.0207090
  • Stanzani M, Orciuolo E, Lewis R, Kontoyiannis DP, Martins SL, St John LS, Komanduri KV. Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood 2005; 105:2258-65; PMID:15546954; http://dx.doi.org/10.1182/blood-2004-09-3421
  • Bok JW, Chung D, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Kirby KA, Keller NP. GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun 2006; 74:6761-8; PMID:17030582; http://dx.doi.org/10.1128/IAI.00780-06
  • Cramer RA, Jr, Gamcsik MP, Brooking RM, Najvar LK, Kirkpatrick WR, Patterson TF, Balibar CJ, Graybill JR, Perfect JR, Abraham SN, et al. Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryot Cell 2006; 5:972-80; PMID:16757745; http://dx.doi.org/10.1128/EC.00049-06
  • Kupfahl C, Heinekamp T, Geginat G, Ruppert T, Hartl A, Hof H, Brakhage AA. Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. Mol Microbiol 2006; 62:292-302; PMID:16956378; http://dx.doi.org/10.1111/j.1365-2958.2006.05373.x
  • Spikes S, Xu R, Nguyen CK, Chamilos G, Kontoyiannis DP, Jacobson RH, Ejzykowicz DE, Chiang LY, Filler SG, May GS. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J Infect Dis 2008; 197:479-86; PMID:18199036; http://dx.doi.org/10.1086/525044
  • Sugui JA, Pardo J, Chang YC, Zarember KA, Nardone G, Galvez EM, Mullbacher A, Gallin JI, Simon MM, Kwon-Chung KJ. Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell 2007; 6:1562-9; PMID:17601876; http://dx.doi.org/10.1128/EC.00141-07
  • Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP. LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 2005; 4:1574-82; PMID:16151250; http://dx.doi.org/10.1128/EC.4.9.1574-1582.2005
  • Ben-Ami R, Lewis RE, Leventakos K, Kontoyiannis DP. Aspergillus fumigatus inhibits angiogenesis through the production of gliotoxin and other secondary metabolites. Blood 2009; 114:5393-9; PMID:19843884; http://dx.doi.org/10.1182/blood-2009-07-231209
  • Sugui JA, Pardo J, Chang YC, Mullbacher A, Zarember KA, Galvez EM, Brinster L, Zerfas P, Gallin JI, Simon MM, et al. Role of laeA in the Regulation of alb1, gliP, Conidial Morphology, and Virulence in Aspergillus fumigatus. Eukaryot Cell 2007; 6:1552-61; PMID:17630330; http://dx.doi.org/10.1128/EC.00140-07
  • Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 2009; 460:1117-21; PMID:19713928; http://dx.doi.org/10.1038/nature08264
  • Carrion Sde J, Leal SM, Jr, Ghannoum MA, Aimanianda V, Latge JP, Pearlman E. The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J Immunol 2013; 191:2581-8; PMID:23926321; http://dx.doi.org/10.4049/jimmunol.1300748
  • Thau N, Monod M, Crestani B, Rolland C, Tronchin G, Latge JP, Paris S. rodletless mutants of Aspergillus fumigatus. Infect Immun 1994; 62:4380-8; PMID:7927699
  • Chai LY, Netea MG, Sugui J, Vonk AG, van de Sande WW, Warris A, Kwon-Chung KJ, Kullberg BJ. Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 2010; 215:915-20; PMID:19939494; http://dx.doi.org/10.1016/j.imbio.2009.10.002
  • Chai LY, Vonk AG, Kullberg BJ, Verweij PE, Verschueren I, van der Meer JW, Joosten LA, Latge JP, Netea MG. Aspergillus fumigatus cell wall components differentially modulate host TLR2 and TLR4 responses. Microbes Infect 2011; 13:151-9; PMID:20971208; http://dx.doi.org/10.1016/j.micinf.2010.10.005
  • Pihet M, Vandeputte P, Tronchin G, Renier G, Saulnier P, Georgeault S, Mallet R, Chabasse D, Symoens F, Bouchara JP. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 2009; 9:177; PMID:19703288; http://dx.doi.org/10.1186/1471-2180-9-177
  • Heinekamp T, Thywissen A, Macheleidt J, Keller S, Valiante V, Brakhage AA. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol 2012; 3:440; PMID:23346079
  • Thywissen A, Heinekamp T, Dahse HM, Schmaler-Ripcke J, Nietzsche S, Zipfel PF, Brakhage AA. Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway. Front Microbiol 2011; 2:96; PMID:21747802; http://dx.doi.org/10.3389/fmicb.2011.00096
  • Akoumianaki T, Kyrmizi I, Valsecchi I, Gresnigt MS, Samonis G, Drakos E, Boumpas D, Muszkieta L, Prevost MC, Kontoyiannis DP, et al. Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity. Cell Host Microbe 2016; 19:79-90; PMID:26749442; http://dx.doi.org/10.1016/j.chom.2015.12.002
  • Chamilos G, Akoumianaki T, Kyrmizi I, Brakhage A, Beauvais A, Latge JP. Melanin Targets LC3-associated phagocytosis (LAP): a novel pathogenetic mechanism in fungal disease. Autophagy 2016; 12(5):888-9
  • Jacobson ES. Pathogenic roles for fungal melanins. Clin Microbiol Rev 2000; 13:708-17; PMID:11023965; http://dx.doi.org/10.1128/CMR.13.4.708-717.2000
  • Jahn B, Koch A, Schmidt A, Wanner G, Gehringer H, Bhakdi S, Brakhage AA. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect Immun 1997; 65:5110-7; PMID:9393803
  • Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol 1998; 180:3031-8; PMID:9620950
  • Beauvais A, Maubon D, Park S, Morelle W, Tanguy M, Huerre M, Perlin DS, Latge JP. Two α(1-3) glucan synthases with different functions in Aspergillus fumigatus. Appl Environ Microbiol 2005; 71:1531-8; PMID:15746357; http://dx.doi.org/10.1128/AEM.71.3.1531-1538.2005
  • Maubon D, Park S, Tanguy M, Huerre M, Schmitt C, Prevost MC, Perlin DS, Latge JP, Beauvais A. AGS3, an α(1-3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet Biol 2006; 43:366-75; PMID:16531086; http://dx.doi.org/10.1016/j.fgb.2006.01.006
  • Beauvais A, Bozza S, Kniemeyer O, Formosa C, Balloy V, Henry C, Roberson RW, Dague E, Chignard M, Brakhage AA, et al. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog 2013; 9:e1003716; PMID:24244155; http://dx.doi.org/10.1371/journal.ppat.1003716
  • Beauvais A, Fontaine T, Aimanianda V, Latge JP. Aspergillus cell wall and biofilm. Mycopathologia 2014; 178:371-7; PMID:24947169; http://dx.doi.org/10.1007/s11046-014-9766-0
  • Lee MJ, Geller AM, Bamford NC, Liu H, Gravelat FN, Snarr BD, Le Mauff F, Chabot J, Ralph B, Ostapska H, et al. Deacetylation of fungal exopolysaccharide mediates adhesion and biofilm formation. MBio 2016; 7:e00252
  • Lee MJ, Gravelat FN, Cerone RP, Baptista SD, Campoli PV, Choe SI, Kravtsov I, Vinogradov E, Creuzenet C, Liu H, et al. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides. J Biol Chem 2014; 289:1243-56; PMID:24257745; http://dx.doi.org/10.1074/jbc.M113.522516
  • Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD, Chen D, Xu W, Kravtsov I, Hoareau CM, Vanier G, et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog 2013; 9:e1003575; PMID:23990787; http://dx.doi.org/10.1371/journal.ppat.1003575
  • Lee MJ, Liu H, Barker BM, Snarr BD, Gravelat FN, Al Abdallah Q, Gavino C, Baistrocchi SR, Ostapska H, Xiao T, et al. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog 2015; 11:e1005187; PMID:26492565; http://dx.doi.org/10.1371/journal.ppat.1005187
  • Robinet P, Baychelier F, Fontaine T, Picard C, Debre P, Vieillard V, Latge JP, Elbim C. A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. J Immunol 2014; 192:5332-42; PMID:24790151; http://dx.doi.org/10.4049/jimmunol.1303180
  • Gresnigt MS, Bozza S, Becker KL, Joosten LA, Abdollahi-Roodsaz S, van der Berg WB, Dinarello CA, Netea MG, Fontaine T, De Luca A, et al. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of Interleukin-1 receptor antagonist. PLoS Pathog 2014; 10:e1003936; PMID:24603878; http://dx.doi.org/10.1371/journal.ppat.1003936
  • Krappmann S, Braus GH. Nitrogen metabolism of Aspergillus and its role in pathogenicity. Med Mycol 2005; 43 Suppl 1:S31-40; PMID:16110790; http://dx.doi.org/10.1080/13693780400024271
  • Panepinto JC, Oliver BG, Fortwendel JR, Smith DL, Askew DS, Rhodes JC. Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduces virulence in a model of Invasive pulmonary aspergillosis. Infect Immun 2003; 71:2819-26; PMID:12704156; http://dx.doi.org/10.1128/IAI.71.5.2819-2826.2003
  • Hissen AH, Wan AN, Warwas ML, Pinto LJ, Moore MM. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence. Infect Immun 2005; 73:5493-503; PMID:16113265; http://dx.doi.org/10.1128/IAI.73.9.5493-5503.2005
  • Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN, Jr, Haynes K, Haas H. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 2004; 200:1213-9; PMID:15504822; http://dx.doi.org/10.1084/jem.20041242
  • Schrettl M, Ibrahim-Granet O, Droin S, Huerre M, Latge JP, Haas H. The crucial role of the Aspergillus fumigatus siderophore system in interaction with alveolar macrophages. Microbes Infect 2010; 12:1035-41; PMID:20659583; http://dx.doi.org/10.1016/j.micinf.2010.07.005
  • Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, Wallner A, Arst HN, Jr, Haynes K, Haas H. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 2007; 3:1195-207; PMID:17845073; http://dx.doi.org/10.1371/journal.ppat.0030128
  • Gsaller F, Hortschansky P, Beattie SR, Klammer V, Tuppatsch K, Lechner BE, Rietzschel N, Werner ER, Vogan AA, Chung D, et al. The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. EMBO J 2014; 33:2261-76; PMID:25092765; http://dx.doi.org/10.15252/embj.201489468
  • Liu H, Gravelat FN, Chiang LY, Chen D, Vanier G, Ejzykowicz DE, Ibrahim AS, Nierman WC, Sheppard DC, Filler SG. Aspergillus fumigatus AcuM regulates both iron acquisition and gluconeogenesis. Mol Microbiol 2010; 78:1038-54; PMID:21062375; http://dx.doi.org/10.1111/j.1365-2958.2010.07389.x
  • Pongpom M, Liu H, Xu W, Snarr BD, Sheppard DC, Mitchell AP, Filler SG. Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease. Infect Immun 2015; 83:923-33; PMID:25534941; http://dx.doi.org/10.1128/IAI.02685-14
  • Altes A, Remacha AF, Sarda P, Sancho FJ, Sureda A, Martino R, Briones J, Brunet S, Canals C, Sierra J. Frequent severe liver iron overload after stem cell transplantation and its possible association with invasive aspergillosis. Bone Marrow Transplant 2004; 34:505-9; PMID:15286693; http://dx.doi.org/10.1038/sj.bmt.1704628
  • Kontoyiannis DP, Chamilos G, Lewis RE, Giralt S, Cortes J, Raad, II, Manning JT, Han X. Increased bone marrow iron stores is an independent risk factor for invasive aspergillosis in patients with high-risk hematologic malignancies and recipients of allogeneic hematopoietic stem cell transplantation. Cancer 2007; 110:1303-6; PMID:17614303; http://dx.doi.org/10.1002/cncr.22909
  • Hohl TM, Feldmesser M. Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot Cell 2007; 6:1953-63; PMID:17890370; http://dx.doi.org/10.1128/EC.00274-07
  • Brown NA, Goldman GH. The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J Microbiol 2016; 54:243-53; PMID:26920884; http://dx.doi.org/10.1007/s12275-016-5510-4
  • Willger SD, Puttikamonkul S, Kim KH, Burritt JB, Grahl N, Metzler LJ, Barbuch R, Bard M, Lawrence CB, Cramer RA, Jr. A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog 2008; 4:e1000200; PMID:18989462; http://dx.doi.org/10.1371/journal.ppat.1000200
  • Chung D, Barker BM, Carey CC, Merriman B, Werner ER, Lechner BE, Dhingra S, Cheng C, Xu W, Blosser SJ, et al. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog 2014; 10:e1004487; PMID:25375670; http://dx.doi.org/10.1371/journal.ppat.1004487
  • Blatzer M, Barker BM, Willger SD, Beckmann N, Blosser SJ, Cornish EJ, Mazurie A, Grahl N, Haas H, Cramer RA. SREBP coordinates iron and ergosterol homeostasis to mediate triazole drug and hypoxia responses in the human fungal pathogen Aspergillus fumigatus. PLoS Genet 2011; 7:e1002374; PMID:22144905; http://dx.doi.org/10.1371/journal.pgen.1002374
  • Schrettl M, Beckmann N, Varga J, Heinekamp T, Jacobsen ID, Jochl C, Moussa TA, Wang S, Gsaller F, Blatzer M, et al. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog 2010; 6:e1001124; PMID:20941352; http://dx.doi.org/10.1371/journal.ppat.1001124
  • Kroll K, Shekhova E, Mattern DJ, Thywissen A, Jacobsen ID, Strassburger M, Heinekamp T, Shelest E, Brakhage AA, Kniemeyer O. The hypoxia-induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence of Aspergillus fumigatus. Mol Microbiol 2016; 101(1):92-108; PMID:26991818
  • Vaknin Y, Hillmann F, Iannitti R, Ben Baruch N, Sandovsky-Losica H, Shadkchan Y, Romani L, Brakhage A, Kniemeyer O, Osherov N. Identification and characterization of a novel Aspergillus fumigatus rhomboid family putative protease RbdA involved in hypoxia sensing and virulence. Infect Immun 2016; 84(6):1866-78; PMID:27068092
  • Barkal LJ, Theberge AB, Guo CJ, Spraker J, Rappert L, Berthier J, Brakke KA, Wang CC, Beebe DJ, Keller NP, et al. Microbial metabolomics in open microscale platforms. Nat Commun 2016; 7:10610; PMID:26842393; http://dx.doi.org/10.1038/ncomms10610
  • Barkal LJ, Walsh NM, Botts MR, Beebe DJ, Hull CM. Leveraging a high resolution microfluidic assay reveals insights into pathogenic fungal spore germination. Integr Biol (Camb) 2016; 8:603-15; PMID:27026574; http://dx.doi.org/10.1039/C6IB00012F
  • Ford S, Friedman L. Experimental study of the pathogenicity of aspergilli for mice. J Bacteriol 1967; 94:928-33; PMID:6051365
  • Slesiona S, Ibrahim-Granet O, Olias P, Brock M, Jacobsen ID. Murine infection models for Aspergillus terreus pulmonary aspergillosis reveal long-term persistence of conidia and liver degeneration. J Infect Dis 2012; 205:1268-77; PMID:22438397; http://dx.doi.org/10.1093/infdis/jis193
  • Person AK, Kontoyiannis DP, Alexander BD. Fungal infections in transplant and oncology patients. Infect Dis Clin North Am 2010; 24:439-59; PMID:20466278; http://dx.doi.org/10.1016/j.idc.2010.01.002
  • de Boer MG, Jolink H, Halkes CJ, van der Heiden PL, Kremer D, Falkenburg JH, van de Vosse E, van Dissel JT. Influence of polymorphisms in innate immunity genes on susceptibility to invasive aspergillosis after stem cell transplantation. PLoS One 2011; 6:e18403; PMID:21483748; http://dx.doi.org/10.1371/journal.pone.0018403
  • Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM, Schwiebert LM, Faro-Trindade I, Brown GD, Steele C. Requisite role for the dectin-1 β-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol 2009; 182:4938-46; PMID:19342673; http://dx.doi.org/10.4049/jimmunol.0804250
  • Drummond RA, Brown GD. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 2011; 14:392-9; PMID:21803640; http://dx.doi.org/10.1016/j.mib.2011.07.001
  • Kyrmizi I, Gresnigt MS, Akoumianaki T, Samonis G, Sidiropoulos P, Boumpas D, Netea MG, van de Veerdonk FL, Kontoyiannis DP, Chamilos G. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J Immunol 2013; 191:1287-99; PMID:23817424; http://dx.doi.org/10.4049/jimmunol.1300132
  • Tam JM, Mansour MK, Khan NS, Seward M, Puranam S, Tanne A, Sokolovska A, Becker CE, Acharya M, Baird MA, et al. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J Infect Dis 2014; 210:1844-54; PMID:24842831; http://dx.doi.org/10.1093/infdis/jiu290
  • Cramer RA, Rivera A, Hohl TM. Immune responses against Aspergillus fumigatus: what have we learned? Curr Opin Infect Dis 2011; 24:315-22; PMID:21666456; http://dx.doi.org/10.1097/QCO.0b013e328348b159
  • Cunha C, Di Ianni M, Bozza S, Giovannini G, Zagarella S, Zelante T, D'Angelo C, Pierini A, Pitzurra L, Falzetti F, et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 2010; 116:5394-402; PMID:20807886; http://dx.doi.org/10.1182/blood-2010-04-279307
  • Gersuk GM, Underhill DM, Zhu L, Marr KA. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol 2006; 176:3717-24; PMID:16517740; http://dx.doi.org/10.4049/jimmunol.176.6.3717
  • Liu ZC, Wang M, Sun WK, Xia D, Tan MM, Ding Y, Qian Q, Su X, Shi Y. Up-regulation of Dectin-1 in airway epithelial cells promotes mice defense against invasive pulmonary aspergillosis. Int J Clin Exp Med 2015; 8:17489-97; PMID:26770339
  • Mattila PE, Metz AE, Rapaka RR, Bauer LD, Steele C. Dectin-1 Fc targeting of aspergillus fumigatus β-glucans augments innate defense against invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2008; 52:1171-2; PMID:18086835; http://dx.doi.org/10.1128/AAC.01274-07
  • Rubino I, Coste A, Le Roy D, Roger T, Jaton K, Boeckh M, Monod M, Latge JP, Calandra T, Bochud PY. Species-specific recognition of Aspergillus fumigatus by Toll-like receptor 1 and Toll-like receptor 6. J Infect Dis 2012; 205:944-54; PMID:22315281; http://dx.doi.org/10.1093/infdis/jir882
  • Steele C, Rapaka RR, Metz A, Pop SM, Williams DL, Gordon S, Kolls JK, Brown GD. The β-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 2005; 1:e42; PMID:16344862; http://dx.doi.org/10.1371/journal.ppat.0010042
  • Balloy V, Si-Tahar M, Takeuchi O, Philippe B, Nahori MA, Tanguy M, Huerre M, Akira S, Latge JP, Chignard M. Involvement of toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect Immun 2005; 73:5420-5; PMID:16113258; http://dx.doi.org/10.1128/IAI.73.9.5420-5425.2005
  • Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, Vecchi A, Mantovani A, Levitz SM, Romani L. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 2004; 172:3059-69; PMID:14978111; http://dx.doi.org/10.4049/jimmunol.172.5.3059
  • Kasperkovitz PV, Cardenas ML, Vyas JM. TLR9 is actively recruited to Aspergillus fumigatus phagosomes and requires the N-terminal proteolytic cleavage domain for proper intracellular trafficking. J Immunol 2010; 185:7614-22; PMID:21059889; http://dx.doi.org/10.4049/jimmunol.1002760
  • Khan NS, Kasperkovitz PV, Timmons AK, Mansour MK, Tam JM, Seward MW, Reedy JL, Puranam S, Feliu M, Vyas JM. Dectin-1 Controls TLR9 Trafficking to Phagosomes Containing β-1,3 Glucan. J Immunol 2016; 196:2249-61; PMID:26829985; http://dx.doi.org/10.4049/jimmunol.1401545
  • Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, Birrell MA, Saijo S, Mostowy S, Shaunak S, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med 2015; 7:240-58; PMID:25637383; http://dx.doi.org/10.15252/emmm.201404556
  • Bochud PY, Chien JW, Marr KA, Leisenring WM, Upton A, Janer M, Rodrigues SD, Li S, Hansen JA, Zhao LP, et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 2008; 359:1766-77; PMID:18946062; http://dx.doi.org/10.1056/NEJMoa0802629
  • Carvalho A, Cunha C, Carotti A, Aloisi T, Guarrera O, Di Ianni M, Falzetti F, Bistoni F, Aversa F, Pitzurra L, et al. Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Exp Hematol 2009; 37:1022-9; PMID:19539691; http://dx.doi.org/10.1016/j.exphem.2009.06.004
  • Kesh S, Mensah NY, Peterlongo P, Jaffe D, Hsu K, VAN DEN Brink M, O'Reilly R, Pamer E, Satagopan J, Papanicolaou GA. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann N Y Acad Sci 2005; 1062:95-103; PMID:16461792; http://dx.doi.org/10.1196/annals.1358.012
  • Garlanda C, Hirsch E, Bozza S, Salustri A, De Acetis M, Nota R, Maccagno A, Riva F, Bottazzi B, Peri G, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 2002; 420:182-6; PMID:12432394; http://dx.doi.org/10.1038/nature01195
  • Bottazzi B, Garlanda C, Cotena A, Moalli F, Jaillon S, Deban L, Mantovani A. The long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: interplay with cellular innate immunity. Immunol Rev 2009; 227:9-18; PMID:19120471; http://dx.doi.org/10.1111/j.1600-065X.2008.00719.x
  • Gaziano R, Bozza S, Bellocchio S, Perruccio K, Montagnoli C, Pitzurra L, Salvatori G, De Santis R, Carminati P, Mantovani A, et al. Anti-Aspergillus fumigatus efficacy of pentraxin 3 alone and in combination with antifungals. Antimicrob Agents Chemother 2004; 48:4414-21; PMID:15504871; http://dx.doi.org/10.1128/AAC.48.11.4414-4421.2004
  • Kaur S, Gupta VK, Thiel S, Sarma PU, Madan T. Protective role of mannan-binding lectin in a murine model of invasive pulmonary aspergillosis. Clin Exp Immunol 2007; 148:382-9; PMID:17335555; http://dx.doi.org/10.1111/j.1365-2249.2007.03351.x
  • Madan T, Reid KB, Singh M, Sarma PU, Kishore U. Susceptibility of mice genetically deficient in the surfactant protein (SP)-A or SP-D gene to pulmonary hypersensitivity induced by antigens and allergens of Aspergillus fumigatus. J Immunol 2005; 174:6943-54; PMID:15905537; http://dx.doi.org/10.4049/jimmunol.174.11.6943
  • Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, Grube M, Loffler J, Maertens JA, Bell AS, Inforzato A, et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med 2014; 370:421-32; PMID:24476432; http://dx.doi.org/10.1056/NEJMoa1211161
  • Oliveira-Coelho A, Rodrigues F, Campos A, Jr, Lacerda JF, Carvalho A, Cunha C. Paving the way for predictive diagnostics and personalized treatment of invasive aspergillosis. Front Microbiol 2015; 6:411; PMID:25999936; http://dx.doi.org/10.3389/fmicb.2015.00411
  • Karki R, Man SM, Malireddi RK, Gurung P, Vogel P, Lamkanfi M, Kanneganti TD. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 2015; 17:357-68; PMID:25704009; http://dx.doi.org/10.1016/j.chom.2015.01.006
  • Said-Sadier N, Padilla E, Langsley G, Ojcius DM. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One 2010; 5:e10008; PMID:20368800; http://dx.doi.org/10.1371/journal.pone.0010008
  • Caffrey AK, Lehmann MM, Zickovich JM, Espinosa V, Shepardson KM, Watschke CP, Hilmer KM, Thammahong A, Barker BM, Rivera A, et al. IL-1alpha signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS Pathog 2015; 11:e1004625; PMID:25629406; http://dx.doi.org/10.1371/journal.ppat.1004625
  • Cunha C, Galosi C, Puccetti M, Aversa F, Romani L, Carvalho A. The Q705K genetic variant in NLRP3 leads to inflammasome hyperactivation and contributes to invasive aspergillosis after stem cell transplantation. Front. Immunol. Conference Abstract: 15th International Congress of Immunology (ICI); http://dx.doi.org/10.3389/conf.fimmu.2013.02.01022
  • Croft CA, Culibrk L, Moore MM, Tebbutt SJ. Interactions of Aspergillus fumigatus conidia with airway epithelial cells: A critical review. Front Microbiol 2016; 7:472; PMID:27092126; http://dx.doi.org/10.3389/fmicb.2016.00472
  • Sheppard DC, Filler SG. Host cell invasion by medically important fungi. Cold Spring Harb Perspect Med 2015; 5:a019687; http://dx.doi.org/10.1101/cshperspect.a019687
  • Filler SG, Sheppard DC. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog 2006; 2:e129; PMID:17196036; http://dx.doi.org/10.1371/journal.ppat.0020129
  • Sheppard DC. Molecular mechanism of Aspergillus fumigatus adherence to host constituents. Curr Opin Microbiol 2011; 14:375-9; PMID:21784698; http://dx.doi.org/10.1016/j.mib.2011.07.006
  • Hebart H, Bollinger C, Fisch P, Sarfati J, Meisner C, Baur M, Loeffler J, Monod M, Latge JP, Einsele H. Analysis of T-cell responses to Aspergillus fumigatus antigens in healthy individuals and patients with hematologic malignancies. Blood 2002; 100:4521-8; PMID:12393638; http://dx.doi.org/10.1182/blood-2002-01-0265
  • Cenci E, Mencacci A, Del Sero G, Bacci A, Montagnoli C, d'Ostiani CF, Mosci P, Bachmann M, Bistoni F, Kopf M, et al. Interleukin-4 causes susceptibility to invasive pulmonary aspergillosis through suppression of protective type I responses. J Infect Dis 1999; 180:1957-68; PMID:10558953; http://dx.doi.org/10.1086/315142
  • Bozza S, Gaziano R, Lipford GB, Montagnoli C, Bacci A, Di Francesco P, Kurup VP, Wagner H, Romani L. Vaccination of mice against invasive aspergillosis with recombinant Aspergillus proteins and CpG oligodeoxynucleotides as adjuvants. Microbes Infect 2002; 4:1281-90; PMID:12443892; http://dx.doi.org/10.1016/S1286-4579(02)00007-2
  • Cenci E, Mencacci A, Bacci A, Bistoni F, Kurup VP, Romani L. T cell vaccination in mice with invasive pulmonary aspergillosis. J Immunol 2000; 165:381-8; PMID:10861075; http://dx.doi.org/10.4049/jimmunol.165.1.381
  • Gafa V, Lande R, Gagliardi MC, Severa M, Giacomini E, Remoli ME, Nisini R, Ramoni C, Di Francesco P, Aldebert D, et al. Human dendritic cells following Aspergillus fumigatus infection express the CCR7 receptor and a differential pattern of interleukin-12 (IL-12), IL-23, and IL-27 cytokines, which lead to a Th1 response. Infect Immun 2006; 74:1480-9; PMID:16495518; http://dx.doi.org/10.1128/IAI.74.3.1480-1489.2006
  • Gafa V, Remoli ME, Giacomini E, Gagliardi MC, Lande R, Severa M, Grillot R, Coccia EM. In vitro infection of human dendritic cells by Aspergillus fumigatus conidia triggers the secretion of chemokines for neutrophil and Th1 lymphocyte recruitment. Microbes Infect 2007; 9:971-80; PMID:17556001; http://dx.doi.org/10.1016/j.micinf.2007.03.015
  • Mezger M, Steffens M, Beyer M, Manger C, Eberle J, Toliat MR, Wienker TF, Ljungman P, Hebart H, Dornbusch HJ, et al. Polymorphisms in the chemokine (C-X-C motif) ligand 10 are associated with invasive aspergillosis after allogeneic stem-cell transplantation and influence CXCL10 expression in monocyte-derived dendritic cells. Blood 2008; 111:534-6; PMID:17957030; http://dx.doi.org/10.1182/blood-2007-05-090928
  • Bozza S, Perruccio K, Montagnoli C, Gaziano R, Bellocchio S, Burchielli E, Nkwanyuo G, Pitzurra L, Velardi A, Romani L. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood 2003; 102:3807-14; PMID:12791648; http://dx.doi.org/10.1182/blood-2003-03-0748
  • Montagnoli C, Perruccio K, Bozza S, Bonifazi P, Zelante T, De Luca A, Moretti S, D'Angelo C, Bistoni F, Martelli M, et al. Provision of antifungal immunity and concomitant alloantigen tolerization by conditioned dendritic cells in experimental hematopoietic transplantation. Blood Cells Mol Dis 2008; 40:55-62; PMID:17827038; http://dx.doi.org/10.1016/j.bcmd.2007.06.016
  • Beck O, Topp MS, Koehl U, Roilides E, Simitsopoulou M, Hanisch M, Sarfati J, Latge JP, Klingebiel T, Einsele H, et al. Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus. Blood 2006; 107:2562-9; PMID:16322466; http://dx.doi.org/10.1182/blood-2005-04-1660
  • Kumaresan PR, Manuri PR, Albert ND, Maiti S, Singh H, Mi T, Roszik J, Rabinovich B, Olivares S, Krishnamurthy J, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci U S A 2014; 111:10660-5; PMID:25002471; http://dx.doi.org/10.1073/pnas.1312789111
  • Clemons KV, Grunig G, Sobel RA, Mirels LF, Rennick DM, Stevens DA. Role of IL-10 in invasive aspergillosis: increased resistance of IL-10 gene knockout mice to lethal systemic aspergillosis. Clin Exp Immunol 2000; 122:186-91; PMID:11091273; http://dx.doi.org/10.1046/j.1365-2249.2000.01382.x
  • Del Sero G, Mencacci A, Cenci E, d'Ostiani CF, Montagnoli C, Bacci A, Mosci P, Kopf M, Romani L. Antifungal type 1 responses are upregulated in IL-10-deficient mice. Microbes Infect 1999; 1:1169-80; PMID:10580272; http://dx.doi.org/10.1016/S1286-4579(99)00245-2
  • Keen LJ, DeFor TE, Bidwell JL, Davies SM, Bradley BA, Hows JM. Interleukin-10 and tumor necrosis factor α region haplotypes predict transplant-related mortality after unrelated donor stem cell transplantation. Blood 2004; 103:3599-602; PMID:14701704; http://dx.doi.org/10.1182/blood-2002-11-3568
  • Sainz J, Hassan L, Perez E, Romero A, Moratalla A, Lopez-Fernandez E, Oyonarte S, Jurado M. Interleukin-10 promoter polymorphism as risk factor to develop invasive pulmonary aspergillosis. Immunol Lett 2007; 109:76-82; PMID:17321603; http://dx.doi.org/10.1016/j.imlet.2007.01.005
  • Seo KW, Kim DH, Sohn SK, Lee NY, Chang HH, Kim SW, Jeon SB, Baek JH, Kim JG, Suh JS, et al. Protective role of interleukin-10 promoter gene polymorphism in the pathogenesis of invasive pulmonary aspergillosis after allogeneic stem cell transplantation. Bone Marrow Transplant 2005; 36:1089-95; PMID:16247433; http://dx.doi.org/10.1038/sj.bmt.1705181
  • Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 2007; 37:2695-706; PMID:17899546; http://dx.doi.org/10.1002/eji.200737409
  • Werner JL, Gessner MA, Lilly LM, Nelson MP, Metz AE, Horn D, Dunaway CW, Deshane J, Chaplin DD, Weaver CT, et al. Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23-dependent manner during invasive fungal infection. Infect Immun 2011; 79:3966-77; PMID:21807912; http://dx.doi.org/10.1128/IAI.05493-11
  • Urb M, Snarr BD, Wojewodka G, Lehoux M, Lee MJ, Ralph B, Divangahi M, King IL, McGovern TK, Martin JG, et al. Evolution of the Immune Response to Chronic Airway Colonization with Aspergillus fumigatus Hyphae. Infect Immun 2015; 83:3590-600; PMID:26123803; http://dx.doi.org/10.1128/IAI.00359-15
  • Chai LY, van de Veerdonk F, Marijnissen RJ, Cheng SC, Khoo AL, Hectors M, Lagrou K, Vonk AG, Maertens J, Joosten LA, et al. Anti-Aspergillus human host defence relies on type 1 T helper (Th1), rather than type 17 T helper (Th17), cellular immunity. Immunology 2010; 130:46-54; PMID:20002791; http://dx.doi.org/10.1111/j.1365-2567.2009.03211.x
  • El-Muzghi AA, Mirkov I, Djokic J, Popov Aleksandrov A, Miljkovic D, Glamoclija J, Kataranovski D, Kataranovski M. Regional cytokine responses to pulmonary aspergillosis in immunocompetent rats. Immunobiology 2013; 218:1514-23; PMID:23810257; http://dx.doi.org/10.1016/j.imbio.2013.05.007
  • Carvalho A, Cunha C, Di Ianni M, Pitzurra L, Aloisi T, Falzetti F, Carotti A, Bistoni F, Aversa F, Romani L. Prognostic significance of genetic variants in the IL-23/Th17 pathway for the outcome of T cell-depleted allogeneic stem cell transplantation. Bone Marrow Transplant 2010; 45:1645-52; PMID:20173782; http://dx.doi.org/10.1038/bmt.2010.28
  • Torosantucci A, Bromuro C, Chiani P, De Bernardis F, Berti F, Galli C, Norelli F, Bellucci C, Polonelli L, Costantino P, et al. A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med 2005; 202:597-606; PMID:16147975; http://dx.doi.org/10.1084/jem.20050749
  • Wharton RE, Stefanov EK, King RG, Kearney JF. Antibodies generated against Streptococci protect in a mouse model of disseminated aspergillosis. J Immunol 2015; 194:4387-96; PMID:25821219; http://dx.doi.org/10.4049/jimmunol.1401940

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.