2,161
Views
30
CrossRef citations to date
0
Altmetric
Review

Role of microglia in fungal infections of the central nervous system

, &
Pages 705-718 | Received 15 Jul 2016, Accepted 11 Nov 2016, Published online: 04 Jan 2017

References

  • Rohatgi S, Pirofski LA. Host immunity to Cryptococcus neoformans. Future Microbiol 2015; 10:565-81; PMID:25865194; http://dx.doi.org/10.2217/fmb.14.132
  • Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 2010; 36:1-53; PMID:20088682; http://dx.doi.org/10.3109/10408410903241444
  • Jacobs CS, Etherton MR, Lyons JL. Fungal infections of the central nervous system. Curr Infect Dis Rep 2014; 16:449; PMID:25348744; http://dx.doi.org/10.1007/s11908-014-0449-2
  • Steenbergen JN, Shuman HA, Casadevall A. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci U S A 2001; 98:15245-50; PMID:11742090; http://dx.doi.org/10.1073/pnas.261418798
  • Pyrgos V, Seitz AE, Steiner CA, Prevots DR, Williamson PR. Epidemiology of cryptococcal meningitis in the US: 1997-2009. PLoS One 2013; 8:e56269; PMID:23457543; http://dx.doi.org/10.1371/journal.pone.0056269
  • Shi M, Mody CH. Fungal Infection in the Brain: What We Learned from Intravital Imaging. Front Immunol 2016; 7:292; PMID:27532000
  • Casadevall A, Pirofski LA. Exserohilum rostratum fungal meningitis associated with methylprednisolone injections. Future Microbiol 2013; 8:135-7; PMID:23374119; http://dx.doi.org/10.2217/fmb.12.138
  • Centers for Disease C, Prevention. Exophiala infection from contaminated injectable steroids prepared by a compounding pharmacy–United States, July–November 2002. MMWR Morb Mortal Wkly Rep 2002; 51:1109-12; PMID:12530707
  • Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 2014; 49:1422-34; PMID:24395130; http://dx.doi.org/10.1007/s12035-013-8620-6
  • Li L, Eter N, Heiduschka P. The microglia in healthy and diseased retina. Exp Eye Res 2015; 136:116-30; PMID:25952657; http://dx.doi.org/10.1016/j.exer.2015.04.020
  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012; 336:86-90; PMID:22442384; http://dx.doi.org/10.1126/science.1219179
  • Yang I, Han SJ, Kaur G, Crane C, Parsa AT. The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 2010; 17:6-10; PMID:19926287; http://dx.doi.org/10.1016/j.jocn.2009.05.006
  • Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009; 27:119-45; PMID:19302036; http://dx.doi.org/10.1146/annurev.immunol.021908.132528
  • Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 1999; 117:145-52; PMID:10567732; http://dx.doi.org/10.1016/S0165-3806(99)00113-3
  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330:841-5; PMID:20966214; http://dx.doi.org/10.1126/science.1194637
  • Casano AM, Peri F. Microglia: multitasking specialists of the brain. Dev Cell 2015; 32:469-77; PMID:25710533; http://dx.doi.org/10.1016/j.devcel.2015.01.018
  • Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011; 11:775-87; PMID:22025055; http://dx.doi.org/10.1038/nri3086
  • Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O'Keeffe S, Phatnani HP, Muratet M, Carroll MC, Levy S, Tavazoie S, et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 2013; 4:385-401; PMID:23850290; http://dx.doi.org/10.1016/j.celrep.2013.06.018
  • Waisman A, Ginhoux F, Greter M, Bruttger J. Homeostasis of microglia in the adult brain: review of novel microglia depletion systems. Trends Immunol 2015; 36:625-36; PMID:26431940; http://dx.doi.org/10.1016/j.it.2015.08.005
  • Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 2013; 16:1896-905; PMID:24162652; http://dx.doi.org/10.1038/nn.3554
  • Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 2014; 15:300-12; PMID:24713688; http://dx.doi.org/10.1038/nrn3722
  • Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, Kundig TM, Frei K, Ginhoux F, Merad M, et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 2012; 37:1050-60; PMID:23177320; http://dx.doi.org/10.1016/j.immuni.2012.11.001
  • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013; 38:792-804; PMID:23601688; http://dx.doi.org/10.1016/j.immuni.2013.04.004
  • Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 2016; 19:987-91; PMID:27459405; http://dx.doi.org/10.1038/nn.4338
  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011; 91:461-553; PMID:21527731; http://dx.doi.org/10.1152/physrev.00011.2010
  • Verkhratsky A, Butt A. Glial Neurobiology: A Textbook. John Wiley & Sons, 2007.
  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308:1314-8; PMID:15831717; http://dx.doi.org/10.1126/science.1110647
  • Benarroch EE. Microglia: Multiple roles in surveillance, circuit shaping, and response to injury. Neurology 2013; 81:1079-88; PMID:23946308; http://dx.doi.org/10.1212/WNL.0b013e3182a4a577
  • Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002; 40:133-9; PMID:12379901; http://dx.doi.org/10.1002/glia.10154
  • Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004; 173:3916-24; PMID:15356140; http://dx.doi.org/10.4049/jimmunol.173.6.3916
  • Drummond RA, Collar AL, Swamydas M, Rodriguez CA, Lim JK, Mendez LM, Fink DL, Hsu AP, Zhai B, Karauzum H, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog 2015; 11:e1005293; PMID:26679537; http://dx.doi.org/10.1371/journal.ppat.1005293
  • Kozel TR, Highison B, Stratton CJ. Localization on encapsulated Cryptococcus neoformans of serum components opsonic for phagocytosis by macrophages and neutrophils. Infect Immun 1984; 43:574-9; PMID:6363293
  • Casadevall A. Antibody immunity and invasive fungal infections. Infect Immun 1995; 63:4211-8; PMID:7591049
  • Adami C, Sorci G, Blasi E, Agneletti AL, Bistoni F, Donato R. S100B expression in and effects on microglia. Glia 2001; 33:131-42; PMID:11180510; http://dx.doi.org/10.1002/1098-1136(200102)33:2%3c131::AID-GLIA1012%3e3.0.CO;2-D
  • Franco R, Fernandez-Suarez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 2015; 131:65-86; PMID:26067058; http://dx.doi.org/10.1016/j.pneurobio.2015.05.003
  • Barichello T, Generoso JS, Simoes LR, Goularte JA, Petronilho F, Saigal P, Badawy M, Quevedo J. Role of microglial activation in the pathophysiology of bacterial meningitis. Mol Neurobiol 2016; 53:1770-81; PMID:25744564; http://dx.doi.org/10.1007/s12035-015-9107-4
  • Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10:1387-94; PMID:17965659; http://dx.doi.org/10.1038/nn1997
  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41:14-20; PMID:25035950; http://dx.doi.org/10.1016/j.immuni.2014.06.008
  • Cherry JD, Olschowka JA, O'Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 2014; 11:98; PMID:24889886; http://dx.doi.org/10.1186/1742-2094-11-98
  • Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 2014; 211:1533-49; PMID:25002752; http://dx.doi.org/10.1084/jem.20132477
  • Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011; 14:1142-9; PMID:21804537; http://dx.doi.org/10.1038/nn.2887
  • Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013; 155:1596-609; PMID:24360280; http://dx.doi.org/10.1016/j.cell.2013.11.030
  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74:691-705; PMID:22632727; http://dx.doi.org/10.1016/j.neuron.2012.03.026
  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007; 131:1164-78; PMID:18083105; http://dx.doi.org/10.1016/j.cell.2007.10.036
  • Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, Bessis A, Ginhoux F, Garel S. Microglia modulate wiring of the embryonic forebrain. Cell Rep 2014; 8:1271-9; PMID:25159150; http://dx.doi.org/10.1016/j.celrep.2014.07.042
  • Pont-Lezica L, Beumer W, Colasse S, Drexhage H, Versnel M, Bessis A. Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur J Neurosci 2014; 39:1551-7; PMID:24593277; http://dx.doi.org/10.1111/ejn.12508
  • Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013; 16:543-51; PMID:23525041; http://dx.doi.org/10.1038/nn.3358
  • Li Y, Du XF, Liu CS, Wen ZL, Du JL. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 2012; 23:1189-202; PMID:23201120; http://dx.doi.org/10.1016/j.devcel.2012.10.027
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22:240-73, Table of Contents; PMID:19366914; http://dx.doi.org/10.1128/CMR.00046-08
  • Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, Forster I, Ruland J. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006; 442:651-6; PMID:16862125; http://dx.doi.org/10.1038/nature04926
  • van de Veerdonk FL, Kullberg BJ, van der Meer JW, Gow NA, Netea MG. Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol 2008; 11:305-12; PMID:18602019; http://dx.doi.org/10.1016/j.mib.2008.06.002
  • Hadas S, Reichert F, Rotshenker S. Dissimilar and similar functional properties of complement receptor-3 in microglia and macrophages in combating yeast pathogens by phagocytosis. Glia 2010; 58:823-30; PMID:20091776
  • Hill JO, Aguirre KM. CD4+ T cell-dependent acquired state of immunity that protects the brain against Cryptococcus neoformans. J Immunol 1994; 152:2344-50; PMID:7907637
  • Huang SH, Jong AY. Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier. Cell Microbiol 2001; 3:277-87; PMID:11298651; http://dx.doi.org/10.1046/j.1462-5822.2001.00116.x
  • Shimoda M, Jones VC, Kobayashi M, Suzuki F. Microglial cells from psychologically stressed mice as an accelerator of cerebral cryptococcosis. Immunol Cell Biol 2006; 84:551-6; PMID:16956390; http://dx.doi.org/10.1111/j.1440-1711.2006.01466.x
  • Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol 2009; 9:429-39; PMID:19461673; http://dx.doi.org/10.1038/nri2565
  • Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem 2016; 136 Suppl 1:10-7; PMID:25693054; http://dx.doi.org/10.1111/jnc.13062
  • da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 2014; 8:362; PMID:25404894; http://dx.doi.org/10.3389/fncel.2014.00362
  • Speed B, Dunt D. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis 1995; 21:28-34; discussion 5-6; PMID:7578756; http://dx.doi.org/10.1093/clinids/21.1.28
  • Correa Mdo P, Severo LC, Oliveira Fde M, Irion K, Londero AT. The spectrum of computerized tomography (CT) findings in central nervous system (CNS) infection due to Cryptococcus neoformans var. gattii in immunocompetent children. Rev Inst Med Trop Sao Paulo 2002; 44:283-7.
  • Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 1995; 8:515-48; PMID:8665468
  • May RC, Stone NR, Wiesner DL, Bicanic T, Nielsen K. Cryptococcus: from environmental saprophyte to global pathogen. Nat Rev Microbiol 2016; 14:106-17; PMID:26685750; http://dx.doi.org/10.1038/nrmicro.2015.6
  • Lee SC, Dickson DW, Casadevall A. Pathology of cryptococcal meningoencephalitis: analysis of 27 patients with pathogenetic implications. Hum Pathol 1996; 27:839-47; PMID:8760020; http://dx.doi.org/10.1016/S0046-8177(96)90459-1
  • Lee SC, Casadevall A, Dickson DW. Immunohistochemical localization of capsular polysaccharide antigen in the central nervous system cells in cryptococcal meningoencephalitis. Am J Pathol 1996; 148:1267-74; PMID:8644867
  • Hole C, Wormley FL, Jr. Innate host defenses against Cryptococcus neoformans. J Microbiol 2016; 54:202-11; PMID:26920880; http://dx.doi.org/10.1007/s12275-016-5625-7
  • Urai M, Kaneko Y, Ueno K, Okubo Y, Aizawa T, Fukazawa H, Sugita T, Ohno H, Shibuya K, Kinjo Y, et al. Evasion of innate immune responses by the highly virulent cryptococcus gattii by altering capsule glucuronoxylomannan structure. Front Cell Infect Microbiol 2015; 5:101; PMID:26779451
  • Almeida F, Wolf JM, Casadevall A. Virulence-associated enzymes of cryptococcus neoformans. Eukaryot Cell 2015; 14:1173-85; PMID:26453651; http://dx.doi.org/10.1128/EC.00103-15
  • Barluzzi R, Brozzetti A, Delfino D, Bistoni F, Blasi E. Role of the capsule in microglial cell-Cryptococcus neoformans interaction: impairment of antifungal activity but not of secretory functions. Med Mycol 1998; 36:189-97; PMID:9776834
  • Buchanan KL, Doyle HA. Requirement for CD4(+) T lymphocytes in host resistance against Cryptococcus neoformans in the central nervous system of immunized mice. Infect Immun 2000; 68:456-62; PMID:10639404; http://dx.doi.org/10.1128/IAI.68.2.456-462.2000
  • Goldman D, Song X, Kitai R, Casadevall A, Zhao ML, Lee SC. Cryptococcus neoformans induces macrophage inflammatory protein 1alpha (MIP-1alpha) and MIP-1beta in human microglia: role of specific antibody and soluble capsular polysaccharide. Infect Immun 2001; 69:1808-15; PMID:11179358; http://dx.doi.org/10.1128/IAI.69.3.1808-1815.2001
  • Zhou Q, Gault RA, Kozel TR, Murphy WJ. Protection from direct cerebral cryptococcus infection by interferon-gamma-dependent activation of microglial cells. J Immunol 2007; 178:5753-61; PMID:17442959; http://dx.doi.org/10.4049/jimmunol.178.9.5753
  • Aguirre K, Crowe J, Haas A, Smith J. Resistance to Cryptococcus neoformans infection in the absence of CD4+ T cells. Med Mycol 2004; 42:15-25; PMID:14982110
  • Kleinschek MA, Muller U, Brodie SJ, Stenzel W, Kohler G, Blumenschein WM, Straubinger RK, McClanahan T, Kastelein RA, Alber G. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J Immunol 2006; 176:1098-106; PMID:16393998; http://dx.doi.org/10.4049/jimmunol.176.2.1098
  • Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992; 149:2736-41; PMID:1383325
  • Saleppico S, Boelaert JR, Omodeo Sale F, Mazzolla R, Morucci P, Bistoni F, Blasi E. Differential effects of iron load on basal and interferon-gamma plus lipopolysaccharide enhance anticryptococcal activity by the murine microglial cell line BV-2. J Neuroimmunol 1999; 93:102-7; PMID:10378873; http://dx.doi.org/10.1016/S0165-5728(98)00206-9
  • Barluzzi R, Saleppico S, Nocentini A, Boelaert JR, Neglia R, Bistoni F, Blasi E. Iron overload exacerbates experimental meningoencephalitis by Cryptococcus neoformans. J Neuroimmunol 2002; 132:140-6; PMID:12417444; http://dx.doi.org/10.1016/S0165-5728(02)00324-7
  • Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol 2011; 48:1592-603; PMID:21546088; http://dx.doi.org/10.1016/j.molimm.2011.04.003
  • Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16:1-13; PMID:15207256; http://dx.doi.org/10.1016/j.nbd.2003.12.016
  • Alvarez M, Casadevall A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol 2006; 16:2161-5; PMID:17084702; http://dx.doi.org/10.1016/j.cub.2006.09.061
  • Lipovsky MM, Juliana AE, Gekker G, Hu S, Hoepelman AI, Peterson PK. Effect of cytokines on anticryptococcal activity of human microglial cells. Clin Diagn Lab Immunol 1998; 5:410-1; PMID:9606001
  • Blasi E, Barluzzi R, Mazzolla R, Mosci P, Bistoni F. Experimental model of intracerebral infection with Cryptococcus neoformans: roles of phagocytes and opsonization. Infect Immun 1992; 60:3682-8; PMID:1500177
  • Lee SC, Kress Y, Dickson DW, Casadevall A. Human microglia mediate anti-Cryptococcus neoformans activity in the presence of specific antibody. J Neuroimmunol 1995; 62:43-52; PMID:7499491; http://dx.doi.org/10.1016/0165-5728(95)00097-L
  • Song X, Tanaka S, Cox D, Lee SC. Fcgamma receptor signaling in primary human microglia: differential roles of PI-3K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction. J Leukoc Biol 2004; 75:1147-55; PMID:14982949; http://dx.doi.org/10.1189/jlb.0403128
  • Lipovsky MM, Gekker G, Anderson WR, Molitor TW, Peterson PK, Hoepelman AI. Phagocytosis of nonopsonized Cryptococcus neoformans by swine microglia involves CD14 receptors. Clin Immunol Immunopathol 1997; 84:208-11; PMID:9245554; http://dx.doi.org/10.1006/clin.1997.4381
  • Preissler J, Grosche A, Lede V, Le Duc D, Krugel K, Matyash V, Szulzewsky F, Kallendrusch S, Immig K, Kettenmann H, et al. Altered microglial phagocytosis in GPR34-deficient mice. Glia 2015; 63:206-15; PMID:25142016; http://dx.doi.org/10.1002/glia.22744
  • Rhodes JC. Contribution of complement component C5 to the pathogenesis of experimental murine cryptococcosis. Sabouraudia 1985; 23:225-34; PMID:4023888; http://dx.doi.org/10.1080/00362178585380331
  • Macher AM, Bennett JE, Gadek JE, Frank MM. Complement depletion in cryptococcal sepsis. J Immunol 1978; 120:1686-90; PMID:351055
  • Kozel TR. Activation of the complement system by the capsule of Cryptococcus neoformans. Curr Top Med Mycol 1993; 5:1-26; PMID:8242797
  • Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016; 352:712-6; PMID:27033548; http://dx.doi.org/10.1126/science.aad8373
  • Rambach G, Maier H, Vago G, Mohsenipour I, Lass-Florl C, Defant A, Wurzner R, Dierich MP, Speth C. Complement induction and complement evasion in patients with cerebral aspergillosis. Microbes Infect 2008; 10:1567-76; PMID:18977454; http://dx.doi.org/10.1016/j.micinf.2008.09.011
  • Ruhnke M, Kofla G, Otto K, Schwartz S. CNS aspergillosis: recognition, diagnosis and management. CNS Drugs 2007; 21:659-76; PMID:17630818; http://dx.doi.org/10.2165/00023210-200721080-00004
  • Saghrouni F, Ben Youssef Y, Gheith S, Bouabid Z, Ben Abdeljelil J, Khammari I, Fathallah A, Khlif A, Ben Said M. Twenty-nine cases of invasive aspergillosis in neutropenic patients. Med Mal Infect 2011; 41:657-62; PMID:22036518; http://dx.doi.org/10.1016/j.medmal.2011.09.011
  • Jantunen E, Salonen J, Juvonen E, Koivunen E, Siitonen T, Lehtinen T, Kuittinen O, Leppa S, Anttila VJ, Itala M, et al. Invasive fungal infections in autologous stem cell transplant recipients: a nation-wide study of 1188 transplanted patients. Eur J Haematol 2004; 73:174-8; PMID:15287914; http://dx.doi.org/10.1111/j.1600-0609.2004.00273.x
  • Musial CE, Cockerill FR, 3rd, Roberts GD. Fungal infections of the immunocompromised host: clinical and laboratory aspects. Clin Microbiol Rev 1988; 1:349-64; PMID:3069198; http://dx.doi.org/10.1128/CMR.1.4.349
  • Dagenais TR, Keller NP. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 2009; 22:447-65; PMID:19597008; http://dx.doi.org/10.1128/CMR.00055-08
  • Anand R, Shankar J, Tiwary BN, Singh AP. Aspergillus flavus induces granulomatous cerebral aspergillosis in mice with display of distinct cytokine profile. Cytokine 2015; 72:166-72; PMID:25647272; http://dx.doi.org/10.1016/j.cyto.2015.01.006
  • Mezger M, Kneitz S, Wozniok I, Kurzai O, Einsele H, Loeffler J. Proinflammatory response of immature human dendritic cells is mediated by dectin-1 after exposure to Aspergillus fumigatus germ tubes. J Infect Dis 2008; 197:924-31; PMID:18279049; http://dx.doi.org/10.1086/528694
  • Chai LY, Vonk AG, Kullberg BJ, Verweij PE, Verschueren I, van der Meer JW, Joosten LA, Latge JP, Netea MG. Aspergillus fumigatus cell wall components differentially modulate host TLR2 and TLR4 responses. Microbes Infect 2011; 13:151-9; PMID:20971208; http://dx.doi.org/10.1016/j.micinf.2010.10.005
  • Cenci E, Mencacci A, Casagrande A, Mosci P, Bistoni F, Romani L. Impaired antifungal effector activity but not inflammatory cell recruitment in interleukin-6-deficient mice with invasive pulmonary aspergillosis. J Infect Dis 2001; 184:610-7; PMID:11494166; http://dx.doi.org/10.1086/322793
  • Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012; 8:1254-66; PMID:23136554; http://dx.doi.org/10.7150/ijbs.4679
  • Rambach G, Hagleitner M, Mohsenipour I, Lass-Florl C, Maier H, Wurzner R, Dierich MP, Speth C. Antifungal activity of the local complement system in cerebral aspergillosis. Microbes Infect 2005; 7:1285-95; PMID:16027023; http://dx.doi.org/10.1016/j.micinf.2005.04.014
  • Tomee JF, Kauffman HF. Putative virulence factors of Aspergillus fumigatus. Clin Exp Allergy 2000; 30:476-84; PMID:10718844; http://dx.doi.org/10.1046/j.1365-2222.2000.00796.x
  • Balenga NA, Klichinsky M, Xie Z, Chan EC, Zhao M, Jude J, Laviolette M, Panettieri RA, Jr., Druey KM. A fungal protease allergen provokes airway hyper-responsiveness in asthma. Nat Commun 2015; 6:6763; PMID:25865874; http://dx.doi.org/10.1038/ncomms7763
  • Rambach G, Dum D, Mohsenipour I, Hagleitner M, Wurzner R, Lass-Florl C, Speth C. Secretion of a fungal protease represents a complement evasion mechanism in cerebral aspergillosis. Mol Immunol 2010; 47:1438-49; PMID:20303595; http://dx.doi.org/10.1016/j.molimm.2010.02.010
  • Long B, Koyfman A. Mucormycosis: what emergency physicians need to know? Am J Emerg Med 2015; 33:1823-5; PMID:26452511; http://dx.doi.org/10.1016/j.ajem.2015.08.037
  • Lionakis MS, Lim JK, Lee CC, Murphy PM. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun 2011; 3:180-99; PMID:21063074; http://dx.doi.org/10.1159/000321157
  • Blasi E, Mazzolla R, Barluzzi R, Mosci P, Bartoli A, Bistoni F. Intracerebral transfer of an in vitro established microglial cell line: local induction of a protective state against lethal challenge with Candida albicans. J Neuroimmunol 1991; 32:249-57; PMID:2033118; http://dx.doi.org/10.1016/0165-5728(91)90195-D
  • Maneu V, Noailles A, Megias J, Gomez-Vicente V, Carpena N, Gil ML, Gozalbo D, Cuenca N. Retinal microglia are activated by systemic fungal infection. Invest Ophthalmol Vis Sci 2014; 55:3578-85; PMID:24833742; http://dx.doi.org/10.1167/iovs.14-14051
  • Orsi CF, Borghi E, Colombari B, Neglia RG, Quaglino D, Ardizzoni A, Morace G, Blasi E. Impact of Candida albicans hyphal wall protein 1 (HWP1) genotype on biofilm production and fungal susceptibility to microglial cells. Microb Pathog 2014; 69-70:20-7; PMID:24685698; http://dx.doi.org/10.1016/j.micpath.2014.03.003
  • Shah VB, Huang Y, Keshwara R, Ozment-Skelton T, Williams DL, Keshvara L. Beta-glucan activates microglia without inducing cytokine production in Dectin-1-dependent manner. J Immunol 2008; 180:2777-85; PMID:18292498; http://dx.doi.org/10.4049/jimmunol.180.5.2777
  • Gil ML, Gozalbo D. Role of Toll-like receptors in systemic Candida albicans infections. Front Biosci (Landmark Ed) 2009; 14:570-82; PMID:19273086; http://dx.doi.org/10.2741/3263
  • Maneu V, Yanez A, Murciano C, Molina A, Gil ML, Gozalbo D. Dectin-1 mediates in vitro phagocytosis of Candida albicans yeast cells by retinal microglia. FEMS Immunol Med Microbiol 2011; 63:148-50; PMID:21668824; http://dx.doi.org/10.1111/j.1574-695X.2011.00829.x
  • Shah VB, Williams DL, Keshvara L. beta-Glucan attenuates TLR2- and TLR4-mediated cytokine production by microglia. Neurosci Lett 2009; 458:111-5; PMID:19393720; http://dx.doi.org/10.1016/j.neulet.2009.04.039
  • Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev 2000; 13:236-301; PMID:10756000; http://dx.doi.org/10.1128/CMR.13.2.236-301.2000
  • Schmidt S, Schneider A, Demir A, Lass-Florl C, Lehrnbecher T. Natural killer cell-mediated damage of clinical isolates of mucormycetes. Mycoses 2016; 59:34-8; PMID:26578394; http://dx.doi.org/10.1111/myc.12431
  • Camargo JF, Bhimji A, Kumar D, Kaul R, Pavan R, Schuh A, Seftel M, Lipton JH, Gupta V, Humar A, et al. Impaired T cell responsiveness to interleukin-6 in hematological patients with invasive aspergillosis. PLoS One 2015; 10:e0123171; PMID:25835547; http://dx.doi.org/10.1371/journal.pone.0123171
  • Kawakami K, Koguchi Y, Qureshi MH, Yara S, Kinjo Y, Uezu K, Saito A. NK cells eliminate Cryptococcus neoformans by potentiating the fungicidal activity of macrophages rather than by directly killing them upon stimulation with IL-12 and IL-18. Microbiol Immunol 2000; 44:1043-50; PMID:11220678; http://dx.doi.org/10.1111/j.1348-0421.2000.tb02601.x
  • Roilides E, Kontoyiannis DP, Walsh TJ. Host defenses against zygomycetes. Clin Infect Dis 2012; 54 Suppl 1:S61-6; PMID:22247447; http://dx.doi.org/10.1093/cid/cir869
  • Maffini F, Cocorocchio E, Pruneri G, Bonomo G, Peccatori F, Chiapparini L, Vincenzo SD, Martinelli G, Viale G. Locked-in syndrome after basilary artery thrombosis by mucormycosis masquerading as meningoencephalitis in a lymphoma patient. Ecancermedicalscience 2013; 7:382; PMID:24386011
  • Aravalli RN, Hu S, Woods JP, Lokensgard JR. Histoplasma capsulatum yeast phase-specific protein Yps3p induces Toll-like receptor 2 signaling. J Neuroinflammation 2008; 5:30; PMID:18606009; http://dx.doi.org/10.1186/1742-2094-5-30
  • Pedroso VS, Vilela MC, Santos PC, Cisalpino PS, Rachid MA, Teixeira AL. Traffic of leukocytes and cytokine up-regulation in the central nervous system in a murine model of neuroparacoccidioidomycosis. Mycopathologia 2013; 176:191-9; PMID:23877333; http://dx.doi.org/10.1007/s11046-013-9679-3
  • Revankar SG, Sutton DA, Rinaldi MG. Primary central nervous system phaeohyphomycosis: a review of 101 cases. Clin Infect Dis 2004; 38:206-16; PMID:14699452; http://dx.doi.org/10.1086/380635
  • Kantarcioglu AS, de Hoog GS. Infections of the central nervous system by melanized fungi: a review of cases presented between 1999 and 2004. Mycoses 2004; 47:4-13; PMID:14998393; http://dx.doi.org/10.1046/j.1439-0507.2003.00956.x
  • Deng S, Pan W, Liao W, de Hoog GS, Gerrits van den Ende AH, Vitale RG, Rafati H, Ilkit M, Van der Lee AH, Rijs AJ, et al. Combination of amphotericin B and flucytosine against neurotropic species of melanized fungi causing primary cerebral phaeohyphomycosis. Antimicrob Agents Chemother 2016; 60:2346-51; PMID:26833164; http://dx.doi.org/10.1128/AAC.02526-15
  • Osuchowski MF, Sharma RP. Fumonisin B1 induces necrotic cell death in BV-2 cells and murine cultured astrocytes and is antiproliferative in BV-2 cells while N2A cells and primary cortical neurons are resistant. Neurotoxicology 2005; 26:981-92; PMID:16005069; http://dx.doi.org/10.1016/j.neuro.2005.05.001
  • Osuchowski MF, Edwards GL, Sharma RP. Fumonisin B1-induced neurodegeneration in mice after intracerebroventricular infusion is concurrent with disruption of sphingolipid metabolism and activation of proinflammatory signaling. Neurotoxicology 2005; 26:211-21; PMID:15713342; http://dx.doi.org/10.1016/j.neuro.2004.10.001
  • Osuchowski MF, He Q, Sharma RP. Endotoxin exposure alters brain and liver effects of fumonisin B1 in BALB/c mice: implication of blood brain barrier. Food Chem Toxicol 2005; 43:1389-97; PMID:15913876; http://dx.doi.org/10.1016/j.fct.2005.03.014
  • Le T, Huu Chi N, Kim Cuc NT, Manh Sieu TP, Shikuma CM, Farrar J, Day JN. AIDS-associated Penicillium marneffei infection of the central nervous system. Clin Infect Dis 2010; 51:1458-62; PMID:21054180; http://dx.doi.org/10.1086/657400
  • Ano Y, Kutsukake T, Hoshi A, Yoshida A, Nakayama H. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum. PLoS One 2015; 10:e0116598; PMID:25760331; http://dx.doi.org/10.1371/journal.pone.0116598
  • Ano Y, Ozawa M, Kutsukake T, Sugiyama S, Uchida K, Yoshida A, Nakayama H. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity. PLoS One 2015; 10:e0118512; PMID:25760987; http://dx.doi.org/10.1371/journal.pone.0118512

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.