1,755
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

Signatures of cytoplasmic proteins in the exoproteome distinguish community- and hospital-associated methicillin-resistant Staphylococcus aureus USA300 lineages

, , , , , , , , , , , , , & show all
Pages 891-907 | Received 21 Nov 2016, Accepted 25 Apr 2017, Published online: 19 May 2017

References

  • Kriegeskorte A, Peters G. Horizontal gene transfer boosts MRSA spreading. Nat Med. 2012; 18:662-3; PMID:22561821; https://doi.org/10.1038/nm.2765
  • Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 2005; 5:751-62; PMID:16310147; https://doi.org/10.1016/S1473-3099(05)70295-4
  • Lowy FD. Antimicrobial resistance: The example of Staphylococcus aureus. J Clin Invest 2003; 111:1265-73; PMID:12727914; https://doi.org/10.1172/JCI18535
  • Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009; 7:629-41; PMID:19680247; https://doi.org/10.1038/nrmicro2200
  • De Kraker ME, Wolkewitz M, Davey PG, Grundmann H. Clinical impact of antimicrobial resistance in European hospitals: Excess mortality and length of hospital stay related to methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother 2011; 55:1598-605; PMID:21220533; https://doi.org/10.1128/AAC.01157-10
  • De Kraker ME, Davey PG, Grundmann H. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: Estimating the burden of antibiotic resistance in Europe. PLoS Med 2011; 8:e1001104; PMID:22022233; https://doi.org/10.1371/journal.pmed.1001104
  • Sun H, Wei C, Liu B, Jing H, Feng Q, Tong Y, Yang Y, Yang L, Zuo Q, Zhang Y, et al. Induction of systemic and mucosal immunity against methicillin-resistant Staphylococcus aureus infection by a novel nanoemulsion adjuvant vaccine. Int J Nanomedicine 2015; 10:7275-90; PMID:26664118; https://doi.org/10.2147/IJN.S91529
  • Olaniyi R, Pozzi C, Grimaldi L, Bagnoli F. Staphylococcus aureus-associated skin and soft tissue infections: anatomical localization, epidemiology, therapy and potential prophylaxis. Curr Top Microbiol 2016; Epub ahead of print; PMID: 27744506; DOI: 10.1007/82_2016_32.
  • Missiakas D, Schneewind O. Staphylococcus aureus vaccines: Deviating from the carol. J Exp Med 2016; 213:1645-53; PMID:27526714; https://doi.org/10.1084/jem.20160569
  • Weber JT. Community-associated methicillin-resistant Staphylococcus aureus. Clin Infect Dis 2005; 41 Suppl 4:S269-72; PMID:16032563; https://doi.org/10.1086/430788
  • DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 2010; 375:1557-68; PMID:20206987; https://doi.org/10.1016/S0140-6736(09)61999-1
  • Wang R, Braughton KR, Kretschmer D, Bach T-HL, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 2007; 13:1510-4; PMID:17994102; https://doi.org/10.1038/nm1656
  • David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010; 23:616-87; PMID:20610826; https://doi.org/10.1128/CMR.00081-09
  • Lindsay JA, Holden MTG. Staphylococcus aureus: Superbug, super genome? Trends Microbiol 2004; 12:378-85; PMID:15276614; https://doi.org/10.1016/j.tim.2004.06.004
  • Sabat AJ, Budimir A, Nashev D, Sá-Leão R, van Dijl JM, Laurent F, Grundmann H, Friedrich AW. ESCMID Study Group of Epidemiological Markers (ESGEM). Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 2013; 18:20380; PMID:23369389
  • Thurlow LR, Joshi GS, Clark JR, Spontak JS, Neely CJ, Maile R, Richardson AR. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 2013; 13:100-7; PMID:23332159; https://doi.org/10.1016/j.chom.2012.11.012
  • Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 2006; 367:731-9; PMID:16517273; https://doi.org/10.1016/S0140-6736(06)68231-7
  • Larsen AR, Goering R, Stegger M, Lindsay JA, Gould KA, Hinds J, Sørum M, Westh H, Boye K, Skov R. Two distinct clones of methicillin-resistant Staphylococcus aureus (MRSA) with the same USA300 pulsed-field gel electrophoresis profile: A potential pitfall for identification of USA300 community-associated MRSA. J Clin Microbiol 2009; 47:3765-8; PMID:19759225; https://doi.org/10.1128/JCM.00934-09
  • Glasner C, Sabat AJ, Dreisbach A, Larsen AR, Friedrich AW, Skov RL, van Dijl JM. Rapid and high-resolution distinction of community-acquired and nosocomial Staphylococcus aureus isolates with identical pulsed-field gel electrophoresis patterns and spa types. Int J Med Microbiol 2013; 303:70-5; PMID:23369304; https://doi.org/10.1016/j.ijmm.2012.12.005
  • Stam-Bolink EM, Mithoe D, Baas WH, Arends JP, Möller AVM. Spread of a methicillin-resistant Staphylococcus aureus ST80 strain in the community of the northern Netherlands. Eur J Clin Microbiol Infect Dis 2007; 26:723-7; PMID:17636366; https://doi.org/10.1007/s10096-007-0352-y
  • Larsen AR, Stegger M, Böcher S, Sørum M, Monnet DL, Skov RL. Emergence and characterization of community-associated methicillin- resistant Staphyloccocus aureus infections in Denmark, 1999 to 2006. J Clin Microbiol 2009; 47:73-8; PMID:18971362; https://doi.org/10.1128/JCM.01557-08
  • Otter JA, French GL. Community-associated meticillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated infection J Hosp Infect 2011; 79:189-93; PMID:21741111; https://doi.org/10.1016/j.jhin.2011.04.028
  • Francois P, Scherl A, Hochstrasser D, Schrenzel J. Proteomic approach to investigate MRSA. Methods Mol Biol 2007; 391:179-99; PMID:18025678
  • Mäder U, Nicolas P, Depke M, Pané-Farré J, Debarbouille M, van der Kooi-Pol MM, Guérin C, Dérozier S, Hiron A, Jarmer H, et al. Staphylococcus aureus Transcriptome Architecture: From Laboratory to Infection-Mimicking Conditions. Plos Genet 2016; 12:e1005962; PMID:27035918; https://doi.org/10.1371/journal.pgen.1005962
  • Muers M. Gene expression: Transcriptome to proteome and back to genome. Nat Rev Genet 2011; 12:518; PMID:21709688; https://doi.org/10.1038/nrg3037
  • Sibbald MJ, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJM, Raangs GC, Stokroos I, Arends JP, Dubois JYF, et al. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev 2006; 70:755-88; PMID:16959968; https://doi.org/10.1128/MMBR.00008-06
  • Ziebandt AK, Kusch H, Degner M, Jaglitz S, Sibbald MJJB, Arends JP, Chlebowicz MA, Albrecht D, Pantuček R, Doškar J, et al. Proteomics uncovers extreme heterogeneity in the Staphylococcus aureus exoproteome due to genomic plasticity and variant gene regulation. Proteomics 2010; 10:1634-44; PMID:20186749; https://doi.org/10.1002/pmic.200900313
  • Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. Staphylococcal immune evasion proteins: structure, function, and host adaptation. Curr Top Microbiol Immunol 2016; Epub ahead of print; Epub ahead of print; PMID: 26919864; DOI: 10.1007/82_2015_5017.
  • Spaan AN, Surewaard BG, Nijland R, van Strijp JA. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 2013; 67:629-50; PMID:23834243; https://doi.org/10.1146/annurev-micro-092412-155746
  • He QY, Chiu JF. Proteomics in biomarker discovery and drug development. J Cell Biochem 2003; 89:868-86; PMID:12874822; https://doi.org/10.1002/jcb.10576
  • Tenover FC, Goering R V. Methicillin-resistant Staphylococcus aureus strain USA300: Origin and epidemiology. J Antimicrob Chemother 2009; 64:441-6; PMID:19608582; https://doi.org/10.1093/jac/dkp241
  • Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, Van Dijl JM, Hecker M. A proteomic view on genome-based signal peptide predictions. Genome Res 2001; 11:1484-502; PMID:11544192; https://doi.org/10.1101/gr.182801
  • Ebner P, Rinker J, Götz F. Excretion of cytoplasmic proteins in Staphylococcus is most likely not due to cell lysis. Curr Genet 2016; 62:19-23; PMID:26148975; https://doi.org/10.1007/s00294-015-0504-z
  • Wang G, Xia Y, Song X, Ai L. Common non-classically secreted bacterial proteins with experimental evidence. Curr Microbiol 2016; 72:102-11; PMID:26429784; https://doi.org/10.1007/s00284-015-0915-6
  • Götz F, Yu W, Dube L, Prax M, Ebner P. Excretion of cytosolic proteins (ECP) in bacteria. Int J Med Microbiol 2015; 305:230-7; PMID:25596889; https://doi.org/10.1016/j.ijmm.2014.12.021
  • Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, Becher D, Van Dijl JM. Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis. J Proteome Res 2013; 12:4101-10; PMID:23937099; https://doi.org/10.1021/pr400433h
  • Bendtsen JD, Kiemer L, Fausbøll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol 2005; 5:58; PMID:16212653; https://doi.org/10.1186/1471-2180-5-58
  • Liew YK, Hamat RA, Van BA, Chong PP, Neela V. Comparative exoproteomics and host inflammatory response in Staphylococcus aureus skin and soft tissue infections, bacteremia, and subclinical colonization. Clin Vaccine Immunol 2015; 22:593-603; PMID:25809633; https://doi.org/10.1128/CVI.00493-14
  • Liew YK, Hamat RA, Nordin SA, Chong PP, Neela V. The exoproteomes of clonally related Staphylococcus aureus strains are diverse. Ann Microbiol 2015; 65:1809-13; https://doi.org/10.1007/s13213-015-1064-7
  • Cassat JE, Hammer ND, Campbell JP, Benson MA, Perrien DS, Mrak LN, Smeltzer MS, Torres VJ, Skaar EP. A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis. Cell Host Microbe 2013; 13:759-72; PMID:23768499; https://doi.org/10.1016/j.chom.2013.05.003
  • Monteiro R, Hébraud M, Chafsey I, Chambon C, Viala D, Torres C, Poeta P, Igrejas G. Surfaceome and exoproteome of a clinical sequence type 398 methicillin resistant Staphylococcus aureus strain. Biochem Biophys Reports 2015; 3:7-13; https://doi.org/10.1016/j.bbrep.2015.07.004
  • Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Saïd-Salim B, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN, et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol 2005; 175:3907-19; PMID:16148137; https://doi.org/10.4049/jimmunol.175.6.3907
  • Geiger T, Francois P, Liebeke M, Fraunholz M, Goerke C, Krismer B, Schrenzel J, Lalk M, Wolz C. The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog 2012; 8:e1003016; PMID:23209405; https://doi.org/10.1371/journal.ppat.1003016
  • Cheung GYC, Joo HS, Chatterjee SS, Otto M. Phenol-soluble modulins - critical determinants of staphylococcal virulence. FEMS Microbiol. Rev. 2014; 38:698-719; PMID:24372362; https://doi.org/10.1111/1574-6976.12057
  • Surewaard BGJ, De Haas CJC, Vervoort F, Rigby KM, Deleo FR, Otto M, Van Strijp JAG, Nijland R. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol 2013; 15:1427-37; PMID:23470014; https://doi.org/10.1111/cmi.12130
  • Dumont AL, Yoong P, Surewaard BGJ, Benson MA, Nijland R, van Strijp JAG, Torres VJ. Staphylococcus aureus elaborates the leukotoxin LukAB to mediate escape from within human neutrophils. Infect Immun 2013; 81:1830-41; PMID:23509138; https://doi.org/10.1128/IAI.00095-13
  • Radisky DC, Stallings-Mann M, Hirai Y, Bissell MJ. Single proteins might have dual but related functions in intracellular and extracellular microenvironments. Nat Rev Mol Cell Biol 2009; 10:228-34; PMID:19190671; https://doi.org/10.1038/nrm2633
  • Huberts DH, van der Klei IJ. Moonlighting proteins: An intriguing mode of multitasking. Biochim Biophys Acta - Mol Cell Res 2010; 1803:520-5; https://doi.org/10.1016/j.bbamcr.2010.01.022
  • Bonar E, Wójcik I, Wladyka B. Proteomics in studies of Staphylococcus aureus virulence. Acta Biochim Pol 2015; 62:367-81; PMID:26307769; https://doi.org/10.18388/abp.2015_1083
  • Kainulainen V, Korhonen TK. Dancing to another tune-adhesive moonlighting proteins in bacteria. Biology 2014; 3:178-204; PMID:24833341; https://doi.org/10.3390/biology3010178
  • Wang G, Xia Y, Cui J, Gu Z, Song Y, Chen YQ, Chen H, Zhang H, Chen W. The roles of moonlighting proteins in bacteria. Curr. Issues Mol. Biol. 2014; 16:15-22; PMID:23872606
  • Otto A, van Dijl JM, Hecker M, Becher D. The Staphylococcus aureus proteome. Int J Med Microbiol 2014; 304:110-20; PMID:24439828; https://doi.org/10.1016/j.ijmm.2013.11.007
  • Wang W, Jeffery CJ. An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. Mol Biosyst 2016; 12:1420-31; PMID:26938107; https://doi.org/10.1039/C5MB00550G
  • Dreisbach A, Hempel K, Buist G, Hecker M, Becher D, Van Dijl JM. Profiling the surfacome of Staphylococcus aureus. Proteomics 2010; 10:3082-96; PMID:20662103; https://doi.org/10.1002/pmic.201000062
  • Henderson B, Martin A. Bacterial moonlighting proteins and bacterial virulence. Curr Top Microbiol Immunol 2013; 358:155-213; PMID:22143554
  • Ebner P, Rinker J, Nguyen MT, Popella P, Nega M, Luqman A, Schittek B, Di Marco M, Stevanovic S, Götza F. Excreted cytoplasmic proteins contribute to pathogenicity in Staphylococcus aureus. Infect Immun 2016; 84:1672-81; PMID:27001537; https://doi.org/10.1128/IAI.00138-16
  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455-77; PMID:22506599; https://doi.org/10.1089/cmb.2012.0021
  • Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068-9; PMID:24642063; https://doi.org/10.1093/bioinformatics/btu153
  • Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691-3; PMID:26198102; https://doi.org/10.1093/bioinformatics/btv421
  • Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312-3; PMID:24451623; https://doi.org/10.1093/bioinformatics/btu033
  • Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 2014; 52:1501-10; PMID:24574290; https://doi.org/10.1128/JCM.03617-13
  • Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640-4; PMID:22782487; https://doi.org/10.1093/jac/dks261
  • Stobernack T, Glasner C, Junker S, Gabarrini G, de Smit M, de Jong A, Otto A, Becher D, van Winkelhoff AJ, van Dijl JM. The extracellular proteome and Citrullinome of the oral pathogen Porphyromonas gingivalis. J Proteome Res 2016; 15:4532-43; PMID:27712078; https://doi.org/10.1021/acs.jproteome.6b00634
  • Gardy JL, Brinkman FSL. Methods for predicting bacterial protein subcellular localization. Nat Rev Microbiol 2006; 4:741-51; PMID:16964270; https://doi.org/10.1038/nrmicro1494
  • Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8:785-6; PMID:21959131; https://doi.org/10.1038/nmeth.1701
  • Käll L, Krogh A, Sonnhammer ELL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol 2004; 338:1027-36; PMID:15111065; https://doi.org/10.1016/j.jmb.2004.03.016
  • Hiller K, Grote A, Scheer M, Münch R, Jahn D. PrediSi: Prediction of signal peptides and their cleavage positions. Nucleic Acids Res 2004; 32(Web Server issue): W375-9. PMID:15215414.
  • Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 2003; 12:1652-62; PMID:12876315; https://doi.org/10.1110/ps.0303703
  • Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, et al. The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: A bioinformatics assessment. Genome Res 2003; 13:2265-70; PMID:12975309; https://doi.org/10.1101/gr.1293003
  • Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Cenk Sahinalp S, Ester M, Foster LJ, et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010; 26:1608-15; PMID:20472543; https://doi.org/10.1093/bioinformatics/btq249
  • Kahsay RY, Gao G, Liao L. An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics 2005; 21:1853-8; PMID:15691854; https://doi.org/10.1093/bioinformatics/bti303
  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwit DI, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2006 Jan; 43(Database issue):D222-6. PMID: 25414356; DOI: 10.1093/nar/gku1221.
  • Bernhardt J, Michalik S, Wollscheid B, Völker U, Schmidt F. Proteomics approaches for the analysis of enriched microbial subpopulations and visualization of complex functional information. Curr Opin Biotechnol 2013; 24:112-9; PMID:23141770; https://doi.org/10.1016/j.copbio.2012.10.009
  • Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 2012; 335:1103-6; PMID:22383849; https://doi.org/10.1126/science.1206848
  • Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W. The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 1997; 179:1153-64; PMID:9023197; https://doi.org/10.1128/jb.179.4.1153-1164.1997
  • Pförtner H, Wagner J, Surmann K, Hildebrandt P, Ernst S, Bernhardt J, Schurmann C, Gutjahr M, Depke M, Jehmlich U, et al. A proteomics workflow for quantitative and time-resolved analysis of adaptation reactions of internalized bacteria. Methods 2013; 61:244-50; PMID:23643866; https://doi.org/10.1016/j.ymeth.2013.04.009
  • Hildebrandt P, Surmann K, Salazar MG, Normann N, Völker U, Schmidt F. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells. Cytom Part A 2016; 89:932-40; https://doi.org/10.1002/cyto.a.22981