3,350
Views
45
CrossRef citations to date
0
Altmetric
Research Paper

PI3K-Akt-mTOR axis sustains rotavirus infection via the 4E-BP1 mediated autophagy pathway and represents an antiviral target

, , , , , , , , , , & show all
Pages 83-98 | Received 17 Jan 2017, Accepted 29 Apr 2017, Published online: 01 Jun 2017

References

  • Arnold MM, Sen A, Greenberg HB, Patton JT. The battle between rotavirus and its host for control of the interferon signaling pathway. PLoS Pathog 2013; 9:e1003064; PMID: 23359266; http://doi.org/10.1371/journal.ppat.1003064
  • Ueda N. Gastroduodenal Perforation and Ulcer Associated With Rotavirus and Norovirus Infections in Japanese Children: A Case Report and Comprehensive Literature Review. Open Forum Infect Dis 2016; 3:ofw026; PMID: 26989751
  • Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD, WHO-coordinated Global Rotavirus Surveillance Network. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 2012; 12:136-41; PMID: 22030330; http://doi.org/10.1016/S1473-3099(11)70253-5
  • Yin Y, Metselaar HJ, Sprengers D, Peppelenbosch MP, Pan Q. Rotavirus in organ transplantation: drug-virus-host interactions. Am J Transplant 2015; 15:585-93; PMID: 25693470; http://doi.org/10.1111/ajt.13135
  • Yin Y, Wang Y, Dang W, Xu L, Su J, Zhou X, Wang W, Felczak K, van der Laan LJ, Pankiewicz KW, et al. Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development. Antiviral Res 2016; 133:41-9; PMID: 27468950; http://doi.org/10.1016/j.antiviral.2016.07.017
  • Lee LY, Ison MG. Diarrhea caused by viruses in transplant recipients. Transpl Infect Dis 2014; 16:347-58; PMID: 24750282; http://doi.org/10.1111/tid.12212
  • Babji S, Kang G. Rotavirus vaccination in developing countries. Curr Opin Virol 2012; 2:443-8; PMID: 22698800; http://doi.org/10.1016/j.coviro.2012.05.005
  • Murray JL, McDonald NJ, Sheng J, Shaw MW, Hodge TW, Rubin DH, O'Brien WA, Smee DF. Inhibition of influenza A virus replication by antagonism of a PI3K-AKT-mTOR pathway member identified by gene-trap insertional mutagenesis. Antivir Chem Chemother 2012; 22:205-15; PMID: 22374988; http://doi.org/10.3851/IMP2080
  • Zwang NA, Zhang R, Germana S, Fan MY, Hastings WD, Cao A, Turka LA. Selective sparing of human tregs by pharmacologic inhibitors of the PI3-kinase and MEK pathways. Am J Transplant 2016; 16:2624-38; PMID:27017850
  • Hubbard PA, Moody CL, Murali R. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities. Front Physiol 2014; 5:478; PMID: 25566081; http://doi.org/10.3389/fphys.2014.00478
  • Strickland SW, Vande Pol S. The Human Papillomavirus Type 16 E7 Oncoprotein Attenuates AKT Signaling to Promote IRES Dependent Translation and expression of c-MYC. J Virol 2016; 90:5611-21; PMID: 27030265
  • Coffey RT, Shi Y, Long MJ, Marr MT, 2nd, Hedstrom L. Ubiquilin-mediated Small Molecule Inhibition of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. J Biol Chem 2016; 291:5221-33; PMID: 26740621; http://doi.org/10.1074/jbc.M115.691584
  • Zhou X, Wang Y, Metselaar HJ, Janssen HL, Peppelenbosch MP, Pan Q. Rapamycin and everolimus facilitate hepatitis E virus replication: revealing a basal defense mechanism of PI3K-PKB-mTOR pathway. J Hepatol 2014; 61:746-54; PMID: 24859454; http://doi.org/10.1016/j.jhep.2014.05.026
  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284:8023-32; PMID: 19150980; http://doi.org/10.1074/jbc.M900301200
  • Igreja C, Peter D, Weiler C, Izaurralde E. 4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation. Nat Commun 2014; 5:4790; PMID: 25179781; http://doi.org/10.1038/ncomms5790
  • Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett 2010; 584:1287-95; PMID: 20083114; http://doi.org/10.1016/j.febslet.2010.01.017
  • Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 2015; 125:25-32; PMID: 25654547; http://doi.org/10.1172/JCI73939
  • Lennemann NJ, Coyne CB. Catch me if you can: the link between autophagy and viruses. PLoS Pathog 2015; 11:e1004685; PMID: 25811485; http://doi.org/10.1371/journal.ppat.1004685
  • Urata S, Ngo N, de la Torre JC. The PI3K/Akt pathway contributes to arenavirus budding. J Virol 2012; 86:4578-85; PMID: 22345463; http://doi.org/10.1128/JVI.06604-11
  • Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, Traynor D, Johnson RF, Dyall J, Kuhn JH, et al. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother 2015; 59:1088-99; PMID: 25487801; http://doi.org/10.1128/AAC.03659-14
  • Heredia A, Le N, Gartenhaus RB, Sausville E, Medina-Moreno S, Zapata JC, Davis C, Gallo RC, Redfield RR. Targeting of mTOR catalytic site inhibits multiple steps of the HIV-1 lifecycle and suppresses HIV-1 viremia in humanized mice. Proc Natl Acad Sci U S A 2015; 112:9412-7; PMID: 26170311; http://doi.org/10.1073/pnas.1511144112
  • Belzile JP, Sabalza M, Craig M, Clark E, Morello CS, Spector DH. Trehalose, an mTOR-Independent Inducer of Autophagy, Inhibits Human Cytomegalovirus Infection in Multiple Cell Types. J Virol 2016; 90:1259-77; http://doi.org/10.1128/JVI.02651-15
  • Yin Y, Bijvelds M, Dang W, Xu L, van der Eijk AA, Knipping K, Tuysuz N, Dekkers JF, Wang Y, de Jonge J, et al. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res 2015; 123:120-31; PMID: 26408355; http://doi.org/10.1016/j.antiviral.2015.09.010
  • Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 2013; 340:1190-4; PMID: 23744940; http://doi.org/10.1126/science.1234852
  • Weichhart T, Hengstschlager M, Linke M. Regulation of innate immune cell function by mTOR. Nat Rev Immunol 2015; 15:599-614; PMID: 26403194; http://doi.org/10.1038/nri3901
  • Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 2007; 26:1932-40; PMID: 17001314; http://doi.org/10.1038/sj.onc.1209990
  • Nehdi A, Sean P, Linares I, Colina R, Jaramillo M, Alain T. Deficiency in either 4E-BP1 or 4E-BP2 augments innate antiviral immune responses. PLoS One 2014; 9:e114854; PMID: 25531441; http://doi.org/10.1371/journal.pone.0114854
  • Colina R, Costa-Mattioli M, Dowling RJ, Jaramillo M, Tai LH, Breitbach CJ, Martineau Y, Larsson O, Rong L, Svitkin YV, et al. Translational control of the innate immune response through IRF-7. Nature 2008; 452:323-8; PMID: 18272964; http://doi.org/10.1038/nature06730
  • Alain T, Lun X, Martineau Y, Sean P, Pulendran B, Petroulakis E, Zemp FJ, Lemay CG, Roy D, Bell JC, et al. Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc Natl Acad Sci U S A 2010; 107:1576-81; PMID: 20080710; http://doi.org/10.1073/pnas.0912344107
  • Chiramel AI, Brady NR, Bartenschlager R. Divergent roles of autophagy in virus infection. Cells 2013; 2:83-104; PMID: 24709646; http://doi.org/10.3390/cells2010083
  • Tanemura M, Ohmura Y, Deguchi T, Machida T, Tsukamoto R, Wada H, Kobayashi S, Marubashi S, Eguchi H, Ito T, et al. Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo. Am J Transplant 2012; 12:102-14; PMID: 21966953; http://doi.org/10.1111/j.1600-6143.2011.03771.x
  • Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18:571-80; PMID: 21311563; http://doi.org/10.1038/cdd.2010.191
  • Dunn EF, Connor JH. Dominant inhibition of Akt/protein kinase B signaling by the matrix protein of a negative-strand RNA virus. J Virol 2011; 85:422-31; PMID: 20980511; http://doi.org/10.1128/JVI.01671-10
  • Hale BG, Jackson D, Chen YH, Lamb RA, Randall RE. Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling. Proc Natl Acad Sci U S A 2006; 103:14194-9; PMID: 16963558; http://doi.org/10.1073/pnas.0606109103
  • Hale BG, Kerry PS, Jackson D, Precious BL, Gray A, Killip MJ, Randall RE, Russell RJ. Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein. Proc Natl Acad Sci U S A 2010; 107:1954-9; PMID: 20133840; http://doi.org/10.1073/pnas.0910715107
  • Su MA, Huang YT, Chen IT, Lee DY, Hsieh YC, Li CY, Ng TH, Liang SY, Lin SY, Huang SW, et al. An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway. PLoS Pathog 2014; 10:e1004196; PMID: 24945378; http://doi.org/10.1371/journal.ppat.1004196
  • Thaa B, Biasiotto R, Eng K, Neuvonen M, Gotte B, Rheinemann L, Mutso M, Utt A, Varghese F, Balistreri G, et al. Differential phosphatidylinositol-3-kinase-Akt-mTOR activation by semliki forest and chikungunya viruses is dependent on nsP3 and connected to replication complex internalization. J Virol 2015; 89:11420-37; PMID: 26339054; http://doi.org/10.1128/JVI.01579-15
  • Surviladze Z, Sterk RT, DeHaro SA, Ozbun MA. Cellular entry of human papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy. J Virol 2013; 87:2508-17; PMID: 23255786; http://doi.org/10.1128/JVI.02319-12
  • Chen Z, Yang L, Liu Y, Tang A, Li X, Zhang J, Yang Z. LY294002 and Rapamycin promote coxsackievirus-induced cytopathic effect and apoptosis via inhibition of PI3K/AKT/mTOR signaling pathway. Mol Cell Biochem 2014; 385:169-77; PMID: 24072614; http://doi.org/10.1007/s11010-013-1825-1
  • Li X, Li Z, Zhou W, Xing X, Huang L, Tian L, Chen J, Chen C, Ma X, Yang Z. Overexpression of 4EBP1, p70S6K, Akt1 or Akt2 differentially promotes Coxsackievirus B3-induced apoptosis in HeLa cells. Cell Death Dis 2013; 4:e803-9; PMID: 24030155; http://doi.org/10.1038/cddis.2013.331
  • Rhoads JM, Corl BA, Harrell R, Niu X, Gatlin L, Phillips O, Blikslager A, Moeser A, Wu G, Odle J. Intestinal ribosomal p70(S6K) signaling is increased in piglet rotavirus enteritis. Am J Physiol Gastrointest Liver Physiol 2007; 292:G913-22; PMID: 17138969; http://doi.org/10.1152/ajpgi.00468.2006
  • Hynds RE, Giangreco A. Concise review: the relevance of human stem cell-derived organoid models for epithelial translational medicine. Stem Cells 2013; 31:417-22; PMID: 23203919; http://doi.org/10.1002/stem.1290
  • Walker NM, Belloli EA, Stuckey L, Chan KM, Lin J, Lynch W, Chang A, Mazzoni SM, Fingar DC, Lama VN. Mechanistic target of rapamycin complex 1 (mTORC1) and mTORC2 as key signaling intermediates in mesenchymal cell activation. J Biol Chem 2016; 291:6262-71; PMID: 26755732; http://doi.org/10.1074/jbc.M115.672170
  • Le Sage V, Cinti A, Amorim R, Mouland AJ. Adapting the stress response: Viral subversion of the mTOR signaling pathway. Viruses 2016; 8:E152.
  • Hopkins KC, Tartell MA, Herrmann C, Hackett BA, Taschuk F, Panda D, Menghani SV, Sabin LR, Cherry S. Virus-induced translational arrest through 4EBP1/2-dependent decay of 5′-TOP mRNAs restricts viral infection. Proc Natl Acad Sci U S A 2015; 112:E2920-9; PMID: 26038567; http://doi.org/10.1073/pnas.1418805112
  • Tsuchihashi NA, Hayashi K, Dan K, Goto F, Nomura Y, Fujioka M, Kanzaki S, Komune S, Ogawa K. Autophagy through 4EBP1 and AMPK regulates oxidative stress-induced premature senescence in auditory cells. Oncotarget 2015; 6:3644-55; PMID: 25682865; http://doi.org/10.18632/oncotarget.2874
  • Rangaraju S, Verrier JD, Madorsky I, Nicks J, Dunn WA, Jr., Notterpek L. Rapamycin activates autophagy and improves myelination in explant cultures from neuropathic mice. J Neurosci 2010; 30:11388-97; PMID: 20739560; http://doi.org/10.1523/JNEUROSCI.1356-10.2010
  • McFarlane S, Aitken J, Sutherland JS, Nicholl MJ, Preston VG, Preston CM. Early induction of autophagy in human fibroblasts after infection with human cytomegalovirus or herpes simplex virus 1. J Virol 2011; 85:4212-21; PMID: 21325419; http://doi.org/10.1128/JVI.02435-10
  • Wang P, Guo QS, Wang ZW, Qian HX. HBx induces HepG-2 cells autophagy through PI3K/Akt-mTOR pathway. Mol Cell Biochem 2013; 372:161-8; PMID: 23001846; http://doi.org/10.1007/s11010-012-1457-x
  • Joubert PE, Werneke SW, de la Calle C, Guivel-Benhassine F, Giodini A, Peduto L, Levine B, Schwartz O, Lenschow DJ, Albert ML. Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med 2012; 209:1029-47; PMID: 22508836; http://doi.org/10.1084/jem.20110996
  • Wu S, Yuan L, Zhang Y, Liu F, Li G, Wen K, Kocher J, Yang X, Sun J. Probiotic Lactobacillus rhamnosus GG mono-association suppresses human rotavirus-induced autophagy in the gnotobiotic piglet intestine. Gut Pathog 2013; 5:22; PMID: 23924832; http://doi.org/10.1186/1757-4749-5-22
  • Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 1998; 72:8586-96; PMID: 9765397
  • Kudchodkar SB, Levine B. Viruses and autophagy. Rev Med Virol 2009; 19:359-78; PMID: 19750559; http://doi.org/10.1002/rmv.630
  • Lee JJ, Loh K, Yap YS. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol Med 2015; 12:342-54; PMID: 26779371
  • Wang Y, Zhou X, Debing Y, Chen K, Van Der Laan LJ, Neyts J, Janssen HL, Metselaar HJ, Peppelenbosch MP, Pan Q. Calcineurin inhibitors stimulate and mycophenolic acid inhibits replication of hepatitis E virus. Gastroenterology 2014; 146:1775-83; PMID: 24582714; http://doi.org/10.1053/j.gastro.2014.02.036
  • Canivet C, Menasria R, Rheaume C, Piret J, Boivin G. Valacyclovir combined with artesunate or rapamycin improves the outcome of herpes simplex virus encephalitis in mice compared to antiviral therapy alone. Antiviral Res 2015; 123:105-13; PMID: 26374952; http://doi.org/10.1016/j.antiviral.2015.09.007
  • Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 1938; 27:493-7; http://doi.org/10.1093/oxfordjournals.aje.a118408