3,088
Views
14
CrossRef citations to date
0
Altmetric
Editorial - Commissioned

Brucella Lipopolysaccharide and pathogenicity: The core of the matter

Pages 379-382 | Received 13 Oct 2017, Accepted 17 Oct 2017, Published online: 01 Mar 2018

References

  • Pappas G, Akritidis N, Bosilkovski M, Tsianos E. Brucellosis. N Engl J Med 2005;352:2325–36.
  • Dean AS, Crump L, Greter H, Hattendorf J, Schelling E, Zinsstag J. Clinical manifestations of human brucellosis: a systematic review and meta-analysis. PLoS Negl Trop Dis 2012;6:e1929.
  • Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis 2007;7:775–86.
  • Avila-Calderon ED, Lopez-Merino A, Sriranganathan N, Boyle SM, Contreras-Rodriguez A. A history of the development of Brucella vaccines. Biomed Res Int 2013;2013:743509.
  • Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. Lancet Infect Dis 2006;6:91–9.
  • Pappas G, Panagopoulou P, Christou L, Akritidis N. Brucella as a biological weapon. Cell Mol Life Sci 2006;63:2229–36.
  • Wallach JC, Ferrero MC, Victoria Delpino M, Fossati CA, Baldi PC. Occupational infection due to Brucella abortus S19 among workers involved in vaccine production in Argentina. Clin Microbiol Infect 2008;14:805–7.
  • Montes J, Rodriguez MA, Martin T, Martin F. Laboratory-acquired meningitis caused by Brucella abortus strain 19. J Infect Dis 1986;154:915–6.
  • Centers for Disease C, Prevention. Human exposure to Brucella abortus strain RB51–Kansas, 1997. MMWR Morb Mortal Wkly Rep 1998;47:172–5.
  • Clapp B, Skyberg JA, Yang X, Thornburg T, Walters N, Pascual DW. Protective live oral brucellosis vaccines stimulate Th1 and th17 cell responses. Infect Immun 2011;79:4165–74.
  • Vitry MA, De Trez C, Goriely S, et al. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun 2012;80:4271–80.
  • Maldonado-Lopez R, Moser M. Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin Immunol 2001;13:275–82.
  • Lapaque N, Moriyon I, Moreno E, Gorvel JP. Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol 2005;8:60–6.
  • Erridge C, Bennett-Guerrero E, Poxton IR. Structure and function of lipopolysaccharides. Microbes Infect 2002;4:837–51.
  • Meng J, Lien E, Golenbock DT. MD-2-mediated ionic interactions between lipid A and TLR4 are essential for receptor activation. J Biol Chem 2010;285:8695–702.
  • Klett J, Reeves J, Oberhauser N, Perez-Regidor L, Martin-Santamaria S. Modulation of toll-like receptor 4. Insights from x-ray crystallography and molecular modeling. Curr Top Med Chem 2014;14:2672–83.
  • Moreno E, Berman DT, Boettcher LA. Biological activities of Brucella abortus lipopolysaccharides. Infect Immun 1981;31:362–70.
  • Goldstein J, Hoffman T, Frasch C, et al. Lipopolysaccharide (LPS) from Brucella abortus is less toxic than that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B. abortus as a carrier in vaccines. Infect Immun 1992;60:1385–9.
  • Conde-Alvarez R, Arce-Gorvel V, Iriarte M, et al. The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition. PLoS Pathog 2012;8:e1002675.
  • Barquero-Calvo E, Mora-Cartin R, Arce-Gorvel V, et al. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide. PLoS Pathog 2015;11:e1004853.
  • Eisenschenk FC, Houle JJ, Hoffmann EM. Mechanism of serum resistance among Brucella abortus isolates. Vet Microbiol 1999;68:235–44.
  • Jimenez de Bagues MP, Terraza A, Gross A, Dornand J. Different responses of macrophages to smooth and rough Brucella spp.: relationship to virulence. Infect Immun 2004;72:2429–33.
  • Mancilla M. Smooth to Rough Dissociation in Brucella: The Missing Link to Virulence. Front Cell Infect Microbiol 2015;5:98.
  • Fontana C, Conde-Alvarez R, Stahle J, et al. Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence. J Biol Chem 2016;291:7727–41.
  • Gil-Ramirez Y, Conde-Alvarez R, Palacios-Chaves L, et al. The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus. Microb Pathogen 2014;73:53–9.
  • Martinez de Tejada G, Pizarro-Cerda J, Moreno E, Moriyon I. The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect Immun 1995;63:3054–61.
  • Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 2011;240:211–34.
  • Byndloss MX, Tsolis RM. Brucella spp. Virulence Factors and Immunity. Annu Rev Anim Biosci 2016;4:111–27.
  • Campos MA, Rosinha GM, Almeida IC, et al. Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect Immun 2004;72:176–86.
  • Copin R, De Baetselier P, Carlier Y, Letesson JJ, Muraille E. MyD88-dependent activation of B220-CD11b+LY-6C+ dendritic cells during Brucella melitensis infection. J Immunol 2007;178:5182–91.
  • Weiss DS, Takeda K, Akira S, Zychlinsky A, Moreno E. MyD88, but not toll-like receptors 4 and 2, is required for efficient clearance of Brucella abortus. Infect Immun 2005;73:5137–43.
  • Mohammadi M, Kianmehr Z, Kaboudanian Ardestani S, Gharegozlou B. Improved immunogenicity of tetanus toxoid by Brucella abortus S19 LPS adjuvant. Iran J Immunol 2014;11:189–99.
  • Kianmehr Z, Soleimanjahi H, Ardestani SK, Fotouhi F, Abdoli A. Influence of Brucella abortus lipopolysaccharide as an adjuvant on the immunogenicity of HPV-16 L1VLP vaccine in mice. Med Microbiol Immunol 2015;204:205–13.
  • Hey YY, O'Neill HC. Murine spleen contains a diversity of myeloid and dendritic cells distinct in antigen presenting function. J Cell Mol Med 2012;16:2611–9.
  • Zhao Y, Hanniffy S, Arce-Gorvel V, et al. Immunomodulatory properties of Brucella melitensis lipopolysaccharide determinants on mouse dendritic cells in vitro and in vivo. Virulence 2017:0 doi. 10.1080/21505594.2017.1386831.
  • Velasco J, Bengoechea JA, Brandenburg K, et al. Brucella abortus and its closest phylogenetic relative, Ochrobactrum spp., differ in outer membrane permeability and cationic peptide resistance. Infect Immun 2000;68:3210–8.
  • Munoz PM, Marin CM, Monreal D, et al. Efficacy of several serological tests and antigens for diagnosis of bovine brucellosis in the presence of false-positive serological results due to Yersinia enterocolitica O:9. Clin Diagn Lab Immunol 2005;12:141–51.
  • Durward-Diioia M, Harms J, Khan M, Hall C, Smith JA, Splitter GA. CD8+ T cell exhaustion, suppressed gamma interferon production, and delayed memory response induced by chronic Brucella melitensis infection. Infect Immun 2015;83:4759–71.
  • Durward M, Radhakrishnan G, Harms J, Bareiss C, Magnani D, Splitter GA. Active evasion of CTL mediated killing and low quality responding CD8+ T cells contribute to persistence of brucellosis. PLoS One 2012;7:e34925.
  • Conde-Alvarez R, Arce-Gorvel V, Gil-Ramirez Y, et al. Lipopolysaccharide as a target for brucellosis vaccine design. Microbial pathogenesis 2013;58:29–34.