1,828
Views
20
CrossRef citations to date
0
Altmetric
Research Paper

Protein kinase A governs growth and virulence in Candida tropicalis

, , & ORCID Icon
Pages 331-347 | Received 05 May 2017, Accepted 01 Dec 2017, Published online: 27 Feb 2018

References

  • Brown GD, Denning DW, Gow NA, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13. doi:10.1126/scitranslmed.3004404.
  • Silva S, Negri M, Henriques M, et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012;36:288–305. doi:10.1111/j.1574-6976.2011.00278.x.
  • Calderone RA, Clancy CJ. Candida and candidiasis. Washington: DC: ASM Press; 2012.
  • Negri M, Silva S, Henriques M, et al. Insights into Candida tropicalis nosocomial infections and virulence factors. Eur J Clin Microbiol Infect Dis. 2012;31:1399–412. doi:10.1007/s10096-011-1455-z.
  • Nucci M, Colombo AL. Candidemia due to Candida tropicalis: clinical, epidemiologic, and microbiologic characteristics of 188 episodes occurring in tertiary care hospitals. Diagn Microbiol Infect Dis. 2007;58:77–82. doi:10.1016/j.diagmicrobio.2006.11.009.
  • Choi MJ, Won EJ, Shin JH, et al. Resistance mechanisms and clinical features of fluconazole-fonsusceptible Candida tropicalis isolates compared with fluconazole-less-susceptible isolates. Antimicrob Agents Chemother. 2016;60:3653–61. doi:10.1128/AAC.02652-15.
  • Garcia-Effron G, Kontoyiannis DP, Lewis RE, et al. Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies. Antimicrob Agents Chemother. 2008;52:4181–3. doi:10.1128/AAC.00802-08.
  • Kothavade RJ, Kura MM, Valand AG, et al. Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol. 2010;59:873–80. doi:10.1099/jmm.0.013227-0.
  • Yang YL, Ho YA, Cheng HH, et al. Susceptibilities of Candida species to amphotericin B and fluconazole: the emergence of fluconazole resistance in Candida tropicalis. Infect Control Hosp Epidemiol. 2004;25:60–4. doi:10.1086/502294.
  • Yang YL, Lin CC, Chang TP, et al. Comparison of human and soil Candida tropicalis isolates with reduced susceptibility to fluconazole. PLoS One. 2012;7:e34609. doi:10.1371/journal.pone.0034609.
  • Yoo JI, Choi CW, Lee KM, et al. National surveillance of antifungal susceptibility of Candida species in South Korean hospitals. Med Mycol. 2009;47:554–8. doi:10.1080/13693780802354037.
  • Gow NA, van de Veerdonk FL, Brown AJ, et al. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol. 2012;10:112–22.
  • Biswas S, Van Dijck P, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev. 2007;71:348–76. doi:10.1128/MMBR.00009-06.
  • Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011;9:737–48. doi:10.1038/nrmicro2636.
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4:119–28. doi:10.4161/viru.22913.
  • Chen YL, Yu SJ, Huang HY, et al. Calcineurin controls hyphal growth, virulence, and drug tolerance of Candida tropicalis. Eukaryot Cell. 2014;13:844–54. doi:10.1128/EC.00302-13.
  • Fuller KK, Rhodes JC. Protein kinase A and fungal virulence: a sinister side to a conserved nutrient sensing pathway. Virulence. 2012;3:109–21. doi:10.4161/viru.19396.
  • Hogan DA, Sundstrom P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol. 2009;4:1263–70. doi:10.2217/fmb.09.106.
  • Kozubowski L, Lee SC, Heitman J. Signalling pathways in the pathogenesis of Cryptococcus. Cell Microbiol. 2009;11:370–80. doi:10.1111/j.1462-5822.2008.01273.x.
  • McDonough KA, Rodriguez A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol. 2012;10:27–38.
  • Liebmann B, Müller M, Braun A, et al. The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect Immun. 2004;72:5193–203. doi:10.1128/IAI.72.9.5193-5203.2004.
  • Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2012;36:25–58. doi:10.1111/j.1574-6976.2011.00275.x.
  • Inglis DO, Sherlock G. Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans. Eukaryot Cell. 2013;12:1316–25. doi:10.1128/EC.00094-13.
  • Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011;9:737–48. doi:10.1038/nrmicro2636.
  • Souto G, Giacometti R, Silberstein S, et al. Expression of TPK1 and TPK2 genes encoding PKA catalytic subunits during growth and morphogenesis in Candida albicans. Yeast. 2006;23:591–603. doi:10.1002/yea.1377.
  • Giacometti R, Kronberg F, Biondi RM, et al. Catalytic isoforms Tpk1 and Tpk2 of Candida albicans PKA have non-redundant roles in stress response and glycogen storage. Yeast. 2009;26:273–85. doi:10.1002/yea.1665.
  • Giacometti R, Kronberg F, Biondi RM, et al. Candida albicans Tpk1p and Tpk2p isoforms differentially regulate pseudohyphal development, biofilm structure, cell aggregation and adhesins expression. Yeast. 2011;28:293–308. doi:10.1002/yea.1839.
  • Bockmühl DP, Krishnamurthy S, Gerads M, et al. Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol Microbiol. 2001;42:1243–57. doi:10.1046/j.1365-2958.2001.02688.x.
  • Sonneborn A, Bockmühl DP, Gerads M, et al. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol Microbiol. 2000;35:386–96. doi:10.1046/j.1365-2958.2000.01705.x.
  • Blankenship JR, Mitchell AP. How to build a biofilm: a fungal perspective. Curr Opin Microbiol. 2006;9:588–94. doi:10.1016/j.mib.2006.10.003.
  • Ramage G, Rajendran R, Sherry L, et al. Fungal biofilm resistance. Int J Microbiol. 2012;2012:528521. doi:10.1155/2012/528521.
  • Kuhn DM, George T, Chandra J, et al. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002;46:1773–80. doi:10.1128/AAC.46.6.1773-1780.2002.
  • Zhang Q, Tao L, Guan G, et al. Regulation of filamentation in the human fungal pathogen Candida tropicalis. Mol Microbiol. 2016;99:528–45. doi:10.1111/mmi.13247.
  • Butler G, Rasmussen MD, Lin MF, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459:657–62. doi:10.1038/nature08064.
  • Toda T, Cameron S, Sass P, et al. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell. 1987;50:277–87. doi:10.1016/0092-8674(87)90223-6.
  • Giacometti R, Kronberg F, Biondi RM, et al. Cross regulation between Candida albicans catalytic and regulatory subunits of protein kinase A. Fungal Genet Biol. 2012;49:74–85. doi:10.1016/j.fgb.2011.12.001.
  • Huang G, Yi S, Sahni N, et al. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog. 2010;6:e1000806. doi:10.1371/journal.ppat.1000806.
  • D'Souza CA, Alspaugh JA, Yue C, et al. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol. 2001;21:3179–91. doi:10.1128/MCB.21.9.3179-3191.2001.
  • Fuller KK, Richie DL, Feng X, et al. Divergent Protein Kinase A isoforms co-ordinately regulate conidial germination, carbohydrate metabolism and virulence in Aspergillus fumigatus. Mol Microbiol. 2011;79:1045–62. doi:10.1111/j.1365-2958.2010.07509.x.
  • Cloutier M, Castilla R, Bolduc N, et al. The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet Biol. 2003;38:133–41. doi:10.1016/S1087-1845(02)00520-0.
  • Fichtner L, Schulze F, Braus GH. Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol. 2007;66:1276–89. doi:10.1111/j.1365-2958.2007.06014.x.
  • Gauthier GM, Keller NP. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol. 2013;61:146–57. doi:10.1016/j.fgb.2013.08.016.
  • Silva S, Negri M, Henriques M, et al. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011;19:241–7. doi:10.1016/j.tim.2011.02.003.
  • Cullen PJ, Sprague GF, Jr. The regulation of filamentous growth in yeast. Genetics. 2012;190:23–49. doi:10.1534/genetics.111.127456.
  • Finkel JS, Xu W, Huang D, et al. Portrait of Candida albicans Adherence Regulators. PLoS Pathog. 2012;8:e1002525. doi:10.1371/journal.ppat.1002525.
  • Liu J-Y, Li W-J, Shi C, et al. Mutations in the Flo8 transcription factor contribute to virulence and phenotypic traits in Candida albicans strains. Microbiol Res. 2015;178:1–8. doi:10.1016/j.micres.2015.05.007.
  • Fox EP, Bui CK, Nett JE, et al. An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol Microbiol. 2015;96:1226–39. doi:10.1111/mmi.13002.
  • Nobile CJ, Fox EP, Nett JE, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012;148:126–38. doi:10.1016/j.cell.2011.10.048.
  • Thevelein JM, de Winde JH. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1999;33:904–18. doi:10.1046/j.1365-2958.1999.01538.x.
  • Wang L, Renault G, Garreau H, et al. Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae. Microbiology. 2004;150:3383–91. doi:10.1099/mic.0.27162-0.
  • Cullen PJ, Sprague GF, Jr. Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A. 2000;97:13619–24. doi:10.1073/pnas.240345197.
  • Smith A, Ward MP, Garrett S. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 1998;17:3556–64. doi:10.1093/emboj/17.13.3556.
  • Cassola A, Parrot M, Silberstein S, et al. Candida albicans lacking the gene encoding the regulatory subunit of protein kinase A displays a defect in hyphal formation and an altered localization of the catalytic subunit. Eukaryot Cell. 2004;3:190–9. doi:10.1128/EC.3.1.190-199.2004.
  • Ding X, Cao C, Zheng Q, et al. The regulatory subunit of Protein Kinase A (Bcy1) in Candida albicans plays critical roles in filamentation and white-opaque switching but is not essential for cell growth. Front Microbiol. 2016;7:2127.
  • Thevelein JM, Cauwenberg L, Colombo S, et al. Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol. 2000;26:819–25. doi:10.1016/S0141-0229(00)00177-0.
  • Mancera E, Porman AM, Cuomo CA, et al. Finding a missing gene: EFG1 regulates morphogenesis in Candida tropicalis. G3 (Bethesda). 2015;5:849–56. doi:10.1534/g3.115.017566.
  • Araujo D, Henriques M, Silva S. Portrait of Candida species biofilm regulatory network genes. Trends Microbiol. 2017;25:62–75. doi:10.1016/j.tim.2016.09.004.
  • Moazeni M, Khorramizadeh MR, Teimoori-Toolabi L, et al. Down-regulation of the ALS3 gene as a consequent effect of RNA-mediated silencing of the EFG1 gene in Candida albicans. Iranian Biomed J. 2012;16:172–8.
  • Bockmühl DP, Ernst JF. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics. 2001;157:1523–30.
  • Park H, Myers CL, Sheppard DC, et al. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol. 2005;7:499–510. doi:10.1111/j.1462-5822.2004.00476.x.
  • Lo HJ, Kohler JR, DiDomenico B, et al. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997;90:939–49. doi:10.1016/S0092-8674(00)80358-X.
  • Reuß O, Vik A, Kolter R, et al. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene. 2004;341:119–27. doi:10.1016/j.gene.2004.06.021.
  • De Backer MD, Maes D, Vandoninck S, et al. Transformation of Candida albicans by electroporation. Yeast. 1999;15:1609–18. doi:10.1002/(SICI)1097-0061(199911)15:15%3c1609::AID-YEA485%3e3.0.CO;2-Y.
  • Winter MB, Salcedo EC, Lohse MB, et al. Global identification of biofilm-specific proteolysis in Candida albicans. MBio. 2016;7:e01514–16. doi:10.1128/mBio.01514-16.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. doi:10.1016/0003-2697(76)90527-3.
  • Chin C, Lai WC, Lee TL, et al. Dissection of the Candida albicans Cdc4 protein reveals the involvement of domains in morphogenesis and cell flocculation. J Biomed Sci. 2013;20:97. doi:10.1186/1423-0127-20-97.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DDC(T)) method. Methods. 2001;25:402–8. doi:10.1006/meth.2001.1262.
  • Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. doi:10.1093/molbev/msw054.
  • Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8:275–82.