1,859
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

The VraSR regulatory system contributes to virulence in Streptococcus suis via resistance to innate immune defenses

, , , , , , , , & show all
Pages 771-782 | Received 14 Jul 2017, Accepted 10 Jan 2018, Published online: 24 Apr 2018

References

  • Segura M, Fittipaldi N, Calzas C, et al. Critical Streptococcus suis virulence factors: Are they all really critical? Trends Microbiol. 2017;25(7):585–599. doi:10.1016/j.tim.2017.02.005
  • Gottschalk M, Xu J, Calzas C, et al. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol. 2010;5:371. doi:10.2217/fmb.10.2
  • Goyette-Desjardins G, Auger J-P, Xu J, et al. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerging Microbes Infect. 2014;3:e45. doi:10.1038/emi.2014.45
  • Li Y, Martinez G, Gottschalk M, et al. Identification of a surface protein of Streptococcus suis and evaluation of its immunogenic and protective capacity in pigs. Infect Immunity. 2006;74:305–12. doi:10.1128/IAI.74.1.305-312.2006
  • Tang J, Wang C, Feng Y, et al. Correction: Streptococcal toxic shock syndrome caused by Streptococcus suis Serotype 2. Plos Med. 2006;3:e151. doi:10.1371/journal.pmed.0030151
  • Chabot-Roy G, Willson P, Segura M, et al. Phagocytosis and killing of Streptococcus suis by porcine neutrophils. Microbial Pathogenesis. 2006;41:21–32. doi:10.1016/j.micpath.2006.04.001
  • Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem. 2000;69:183–215. doi:10.1146/annurev.biochem.69.1.183
  • Standish AJ, Stroeher UH, Paton JC. The two-component signal transduction system RR06/HK06 regulates expression of cbpA in Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 2005;102:7701–6. doi:10.1073/pnas.0409377102
  • Herrera CM, Crofts AA, Henderson JC, et al. The Vibrio cholerae VprA-VprB two-component system controls virulence through endotoxin modification. mBio. 2014;5:e02283–1.4. doi:10.1128/mBio.02283-14
  • Thomassin J-L, Giannakopoulou N, Zhu L, et al. The CpxRA two-component system is essential for citrobacter rodentium virulence. Infect Immunity. 2015;83:1919–28. doi:10.1128/IAI.00194-15
  • Vega LA, Malke H, McIver KS. Virulence-Related Transcriptional Regulators of Streptococcus pyogenes. In: Ferretti JJ, Stevens DL, Fischetti VA, eds. Streptococcus pyogenes: Basic Biology to Clinical Manifestations. Oklahoma City, OK: University of Oklahoma Health Sciences Center, 2016:270–303.
  • Chen C, Tang J, Dong W, et al. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One. 2007;2:e315. doi:10.1371/journal.pone.0000315
  • de Greeff A, Buys H, van Alphen L, et al. Response regulator important in pathogenesis of Streptococcus suis serotype 2. Microbial Pathogenesis. 2002;33:185–92. doi:10.1016/S0882-4010(02)90526-7
  • Pan XZ, Ge JC, Li M, et al. The orphan response regulator CovR: a globally negative modulator of virulence in Streptococcus suis Serotype 2. J Bacteriol. 2009;191:2601–12. doi:10.1128/JB.01309-08
  • Li M, Wang CJ, Feng YJ, et al. SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis Serotype 2. PLoS One. 2008;3:12.
  • Li JQ, Tan C, Zhou Y, et al. The two-component regulatory system CiaRH contributes to the virulence of Streptococcus suis 2. Vet Microbiol. 2011;148:99–104. doi:10.1016/j.vetmic.2010.08.005
  • Wang H, Shen X, Zhao Y, et al. Identification and proteome analysis of the two-component VirR/VirS system in epidemic Streptococcus suis serotype 2. FEMS Microbiol Lett. 2012;333:160–8. doi:10.1111/j.1574-6968.2012.02611.x
  • Han HM, Liu CH, Wang QH, et al. The two-component system Ihk/Irr contributes to the virulence of Streptococcus suis serotype 2 strain 05ZYH33 through alteration of the bacterial cell metabolism. Microbiology-Sgm. 2012;158:1852–66. doi:10.1099/mic.0.057448-0
  • Xu J, Fu SL, Liu ML, et al. The two-component system NisK/NisR contributes to the virulence of Streptococcus suis serotype 2. Microbiol Res. 2014;169:541–6. doi:10.1016/j.micres.2013.11.002
  • Yuan F, Tan C, Liu Z, et al. The 1910HK/RR two-component system is essential for the virulence of Streptococcus suis serotype 2. Microbial Pathogenesis. 2017;104:137–45. doi:10.1016/j.micpath.2016.12.026
  • Belcheva A, Golemi-Kotra D. A close-up view of the VraSR two-component system – A mediator of staphylococcus aureus response to cell wall damage. J Biol Chem. 2008;283:12354–64. doi:10.1074/jbc.M710010200
  • Kuroda M, Kuroda H, Oshima T, et al. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol. 2004;49:807–21. doi:10.1046/j.1365-2958.2003.03599.x
  • Voyich JM, Vuong C, DeWald M, et al. The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus. The J Infect Dis. 2009;199:1698–706. doi:10.1086/598967
  • Schwerk C, Tenenbaum T, Kim KS, et al. The choroid plexus-a multi-role player during infectious diseases of the CNS. Frontiers Cell Neurosci. 2015;9:80. doi:10.3389/fncel.2015.00080
  • Charland N, Nizet V, Rubens CE, et al. Streptococcus suis Serotype 2 interactions with human brain microvascular endothelial cells. Infect Immunity. 2000;68:637–43. doi:10.1128/IAI.68.2.637-643.2000
  • Pian YY, Li XQ, Zheng YL, et al. Binding of human Fibrinogen to MRP enhances Streptococcus suis survival in host blood in a alpha(X)beta(2) Integrin-dependent manner. Sci Rep. 2016;6:14. doi:10.1038/srep26966
  • Voyich JM, Braughton KR, Sturdevant DE, et al. Engagement of the pathogen survival response used by group a Streptococcus to avert destruction by innate host defense. J Immunol. 2004;173:1194–201. doi:10.4049/jimmunol.173.2.1194
  • Halfmann A, Schnorpfeil A, Muller M, et al. Activity of the two-component regulatory system CiaRH in Streptococcus pneumoniae R6. J Mol Microbiol Biotechnol. 2011;20:96–104. doi:10.1159/000324893
  • Liu M, Hanks TS, Zhang J, et al. Defects in ex vivo and in vivo growth and sensitivity to osmotic stress of group A Streptococcus caused by interruption of response regulator gene vicR. Microbiology. 2006;152:967–78. doi:10.1099/mic.0.28706-0
  • Fabret C, Hoch JA. A two-component signal transduction system essential for growth of Bacillus subtilis: Implications for anti-infective therapy. J Bacteriol. 1998;180:6375–83.
  • Martin PK, Li T, Sun DX, et al. Role in Cell Permeability of an Essential. J Bacteriol. 1999;181:3666–73.
  • Throup JP, Koretke KK, Bryant AP, et al. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol. 2000;35:566. doi:10.1046/j.1365-2958.2000.01725.x
  • Minasyan HA. Erythrocyte and leukocyte: two partners in bacteria killing. Int Rev Immunol. 2014;33:490–7. doi:10.3109/08830185.2014.956359
  • Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33:657–70. doi:10.1016/j.immuni.2010.11.011
  • Rigby KM, DeLeo FR. Neutrophils in innate host defense against Staphylococcus aureus infections. Seminars Immunopathol. 2012;34:237–59. doi:10.1007/s00281-011-0295-3
  • Domenico P, Salo RJ, Cross AS, et al. Polysaccharide capsule-mediated resistance to opsonophagocytosis in Klebsiella pneumoniae. Infect Immunity. 1994;62:4495–9.
  • Horwitz MA, Silverstein SC. Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes. J Clin Invest. 1980;65:82–94. doi:10.1172/JCI109663
  • Monari C, Kozel TR, Bistoni F, et al. Modulation of C5aR Expression on Human Neutrophils by Encapsulated and Acapsular Cryptococcus neoformans. Infect Immunity. 2002;70:3363–70. doi:10.1128/IAI.70.7.3363-3370.2002
  • Bolotin S, Fuller JD, Bast DJ, et al. Capsule expression regulated by a two-component signal transduction system in Streptococcus iniae. Fems Immunol Med Microbiol. 2007;50:366–74. doi:10.1111/j.1574-695X.2007.00261.x
  • Pang YY, Schwartz J, Bloomberg S, et al. Methionine Sulfoxide reductases protect against oxidative stress in Staphylococcus aureus encountering exogenous oxidants and human neutrophils. J Innate Immun. 2014;6:353–64. doi:10.1159/000355915
  • Segura M, Vadeboncoeur N, Gottschalk M. CD14-dependent and -independent cytokine and chemokine production by human THP-1 monocytes stimulated by Streptococcus suis capsular type 2. Clin Exp Immunol. 2002;127:243–54. doi:10.1046/j.1365-2249.2002.01768.x
  • Dominguez-Punaro MC, Segura M, Plante MM, et al. Streptococcus suis Serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. J Immunol. 2007;179:1842–54. doi:10.4049/jimmunol.179.3.1842
  • Kobayashi SD, Voyich JM, Burlak C, et al. Neutrophils in the innate immune response. Arch Immunol Ther Exp. 2005;53:505–17.
  • Curfs JH, Meis JF, Hoogkamp-Korstanje JA. A primer on cytokines: sources, receptors, effects, and inducers. Clin Microbiol Rev. 1997;10:742–80.
  • Benga L, Friedl P, Valentin-Weigand P. Adherence of Streptococcus suis to porcine endothelial cells. J Veterinary Med. 2005;52:392. doi:10.1111/j.1439-0450.2005.00880.x
  • Brassard J, Gottschalk M, Quessy S. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Vet Microbiol. 2004;102:87–94. doi:10.1016/j.vetmic.2004.05.008
  • de Greeff A. Contribution of Fibronectin-Binding Protein to Pathogenesis of Streptococcus suis Serotype 2. Infect Immunity. 2002;70:1319–25. doi:10.1128/IAI.70.3.1319-1325.2002
  • Du B, Ji W, An H, et al. Functional analysis of c-di-AMP phosphodiesterase, GdpP, in Streptococcus suis serotype 2. Microbiol Res. 2014;169:749–58. doi:10.1016/j.micres.2014.01.002
  • Wang C, Li M, Feng Y, et al. The involvement of sortase A in high virulence of STSS-causing Streptococcus suis serotype 2. Arch Microbiol. 2009;191:23–33. doi:10.1007/s00203-008-0425-z
  • Tang Y, Wu W, Zhang X, et al. Catabolite control protein a of Streptococcus suis type 2 contributes to sugar metabolism and virulence. J Microbiol. 2012;50:994–1002. doi:10.1007/s12275-012-2035-3
  • Teng L, Dong X, Zhou Y, et al. Draft genome sequence of hypervirulent and vaccine CandidateStreptococcussuisStrain SC19. Genome Announcements. 2017;5:e01484–16. doi:10.1128/genomeA.01484-16
  • Khan NA, Kim Y, Shin S, et al. FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell Microbiol. 2007;9:169–78. doi:10.1111/j.1462-5822.2006.00779.x
  • Yang R, Liu W, Miao L, et al. Induction of VEGFA and Snail-1 by meningiticEscherichia colimediates disruption of the blood-brain barrier. Oncotarget. 2016;7:63839.
  • Takamatsu D, Osaki M, Sekizaki T. Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid. 2001;46:140–8. doi:10.1006/plas.2001.1532
  • Takamatsu D, Osaki M, Sekizaki T. Construction and characterization of Streptococcus suis-Escherichia coli shuttle cloning vectors. Plasmid. 2001;45:101–13. doi:10.1006/plas.2000.1510
  • Voyich JM, Sturdevant DE, Braughton KR, et al. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 2003;100:1996–2001. doi:10.1073/pnas.0337370100
  • Ferrando ML, Willemse N, Zaccaria E, et al. Streptococcal Adhesin P (SadP) contributes to Streptococcus suis adhesion to the human intestinal epithelium. PLoS One. 2017;12:e0175639. doi:10.1371/journal.pone.0175639
  • Zheng F, Ji H, Cao M, et al. Contribution of the Rgg transcription regulator to metabolism and virulence of Streptococcus suis Serotype 2. Infect Immunity. 2011;79:1319–28. doi:10.1128/IAI.00193-10
  • Charland N, Kobisch M, Martineau-Doizé B, et al. Role of capsular sialic acid in virulence and resistance to phagocytosis of Streptococcus suis capsular type 2. Fems Immunol Med Microbiol. 1996;14:195. doi:10.1111/j.1574-695X.1996.tb00287.x
  • Zhang Y, Ding D, Liu M, et al. Effect of the glycosyltransferases on the capsular polysaccharide synthesis of Streptococcus suis serotype 2. Microbiol Res. 2016;185:45–54. doi:10.1016/j.micres.2016.02.002
  • Pian Y, Gan S, Wang S, et al. Fhb, a novel factor H-binding surface protein, contributes to the antiphagocytic ability and virulence of Streptococcus suis. Infect Immunity. 2012;80:2402–13. doi:10.1128/IAI.06294-11
  • Liu P, Pian YY, Li XQ, et al. Streptococcus suis Adenosine synthase functions as an effector in evasion of PMN-mediated innate immunity. J Infect Dis. 2014;210:35–45. doi:10.1093/infdis/jiu050
  • Meijerink M, Ferrando ML, Lammers G, et al. Immunomodulatory effects of Streptococcus suis capsule type on human dendritic cell responses, phagocytosis and intracellular survival. PLoS One. 2012;7:e35849. doi:10.1371/journal.pone.0035849