1,360
Views
7
CrossRef citations to date
0
Altmetric
Letter to the Editor

Efficient infection of hamster with Leishmania donovani by retro-orbital inoculation

, , , & ORCID Icon
Pages 711-718 | Received 03 Dec 2018, Accepted 23 Jul 2019, Published online: 07 Aug 2019

References

  • World Health Organization (WHO). Working to overcome the global impact of neglected tropical diseases. First WHO report on neglected tropical diseases. WHO Geneva. 2010:184.
  • Kedzierski L, Zhu Y, Handman E. Leishmania vaccines: progress and problems. Parasitology. 2006;133(SupplS2):S87–112.
  • Grimaldi G, Teva A Jr, dos-Santos CB, et al. Field trial of efficacy of the Leish-tec ® vaccine against canine leishmaniasis caused by Leishmania infantum in an endemic area with high transmission rates. PLoS ONE. 2017;12:e0185438.
  • Otranto D, Dantas-Torres F. The prevention of canine leishmaniasis and its impact on public health. Trends Parasitol. 2013;29(7):339–345.
  • Costa DNCC, Codeço CT, Silva MA, et al. Culling dogs in scenarios of imperfect control: realistic impact on the prevalence of canine visceral Leishmaniasis. PLoS Negl Trop Dis. 2013;7:e2355.
  • Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27:305–318.
  • Chakravarty J, Sundar S. Drug resistance in Leishmaniasis. J Glob Infect Dis. 2010;2:167–176.
  • Mohapatra S. Drug resistance in leishmaniasis: newer developments. Trop Parasitol. 2014;4:4–9.
  • Nagle AS, Khare S, Kumar AB, et al. Recent developments in drug discovery for Leishmaniasis and human African trypanosomiasis. Chem Rev. 2014;114:11305−11347.
  • Loeuillet C, Bañuls AL, Hide M. Study of Leishmania pathogenesis in mice: experimental considerations. Parasit Vectors. 2016;9:144.
  • Loría-Cervera EN, Andrade-Narváez FJ. Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo. 2014;56(1):1–11.
  • Garg R, Dube A. Animal models for vaccine studies for visceral leishmaniasis. Indian J Med Res. 2006;123:439–454.
  • Requena JM, Soto M, Doria MD, et al. Immune and clinical parameters associated with Leishmania infantum infection in the golden hamster model. Vet Immunol Immunopathol. 2000;76:269–281.
  • Melby PC, Chandrasekar B, Zhao W, et al. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol. 2001;166:1912–1920.
  • Aslan H, Dey R, Meneses C, et al. A new model of progressive visceral leishmaniasis in hamsters by natural transmission via bites of vector sand flies. J Inf Dis. 2013;207:1328–1338.
  • Field KJ, Sibold AL. The laboratory hamster & Gerbil. Boca Raton: CRC Press LLC; 1999.
  • Wyllie S, Fairlamb AH. Refinement of techniques for the propagation of Leishmania donovani in hamsters. Acta Trop. 2006;97:364–369.
  • Corral MJ, Serrano DR, Moreno I, et al. Efficacy of low doses of amphotericin B plus allicin against experimental visceral leishmaniasis. J Antimicrob Chemother. 2014;69:3268–3274.
  • Moreira MD, Vitoriano-Souza J, Mendes Roatt B, et al. Parasite burden in hamsters infected with two different strains of Leishmania (Leishmania) infantum: “Leishman Donovan units” versus Real-Time PCR. PLoS ONE. 2012;10:e47907.
  • Rama-Íñiguez S, Dea-Ayuela MA, Sánchez-Brunete JA, et al. Real-Time reverse transcription–PCR quantification of cytokine mRNA expression in golden Syrian hamster infected with Leishmania infantum and treated with a new amphotericin B formulation. Antimicrob Agents Chemother. 2006;50:1195−1201.
  • Dea-Ayuela MA, Rama-Íniguez S, Alunda JM, et al. Setting new immunobiological parameters in the hamster model of visceral leishmaniasis for in vivo testing of antileishmanial compounds. Vet Res Commun. 2007;31:703–717.
  • Kushawaha PK, Gupta R, Sundar S, et al. Elongation factor-2, a Th1 stimulatory protein of Leishmania donovani, generates strong IFN-γ and IL-12 response in cured Leishmania-infected patients/hamsters and protects hamsters against Leishmania challenge. J Immunol. 2011;187:6417–6427.
  • Yardeni T, Eckhaus M, Morris D, et al. Retro-orbital injections in mice. Lab Anim. 2011;40:155–160.
  • Khalid KE, Lima Nascimento MS, Amorim Sacramento L, et al. T1/ST2 deficient mice display protection against Leishmania infantum experimental infection. Acta Trop. 2017;172:1–6.
  • Picazo MG, Benito PJ, García-Olmo DC. Efficiency and safety of a technique for drawing blood from the hamster cranial vena cava. Lab Anim NY. 2009;38:211−216.
  • Castro H, Teixeira F, Romao S, et al. Leishmania mitochondrial peroxiredoxin plays a crucial peroxidase-unrelated role during infection: insight into its novel chaperone activity. PLoS Pathog. 2011;7:e1002325.
  • Buffet PA, Sulahian A, Garin YJF, et al. Culture microtitration: a sensitive method for quantifying Leishmania infantum in tissues of infected mice. Antimicrob Agents Chemother. 1995;3:2167–2168.
  • McCall LI, Zhang WW, Matlashewski G. Determinants for the development of visceral leishmaniasis disease. PLoS Pathog. 2013;9:e1003053.
  • Pérez LE, Chandrasekar B, Saldarriaga OA, et al. Reduced nitric oxide synthase 2 (NOS2) promoter activity in the Syrian hamster renders the animal functionally deficient in NOS2 activity and unable to control an intracellular pathogen. J Immunol. 2006;176:5519−5528.
  • Moreira MD, Vitoriano-Souza J, Mendes Roatt B, et al. Clinical, hematological and biochemical alterations in hamster (Mesocricetus auratus) experimentally infected with Leishmania infantum through different routes of inoculation. Parasit Vectors. 2016;9:181.