2,139
Views
17
CrossRef citations to date
0
Altmetric
Research Paper

Metarhizium brunneum infection dynamics differ at the cuticle interface of susceptible and tolerant morphs of Galleria mellonella

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 999-1012 | Received 09 Jul 2019, Accepted 14 Oct 2019, Published online: 25 Nov 2019

References

  • Liao C, Upadhyay A, Liang J, et al. 3, 4-Dihydroxyphenylacetaldehyde synthase and cuticle formation in insects. Dev Comp Immunol. 2018;83:pp.44–50.
  • Vincent JF, Wegst UG. Design and mechanical properties of insect cuticle. Arthropod Struct Dev. 2004;33(3):pp.187–199.
  • Butt TM, Coates CJ, Dubovskiy IM, et al. Entomopathogenic fungi: new insights into host–pathogen interactions. In: Advances in genetics. Vol. 94. Academic Press; 2016. p. 307–364.
  • Ortiz-Urquiza A, Keyhani NO. Action on the Surface: entomopathogenic Fungi versus the Insect Cuticle. Insects. 2013;4(3):357–374.
  • de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control. 2007;43(3):237–256.
  • Alkhaibari AM, Lord AM, Maffeis T, et al. Highly specific host-pathogen interactions influence Metarhizium brunneum blastospore virulence against Culex quinquefasciatus larvae. Virulence. 2018;9(1):pp.1449–1467.
  • Greenfield BP, Lord AM, Dudley E, et al. Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle. R Soc Open Sci. 2014;1(2):140193.
  • Butt TM, Ibrahim L, Clark SJ, et al. The germination behaviour of Metarhizium anisopliae on the surface of aphid and flea beetle cuticles. Mycol Res. 1995;99(8):945–950.
  • Butt TM, Goettel MS. Bioassays of entomogenous fungi. In: Navon A, Ascher KRS, Editor. Bioassays of entomopathogenic microbes and nematodes. 2000. p. 141–195.
  • Inglis GD, Goettel MS, Butt TM, et al. Use of hyphomycetous fungi for managing insect pests. In: Fungi as biocontrol agents. 2001. p. 23–69.
  • Lovett B, St Leger RJ. Stress is the rule rather than the exception for Metarhizium. Curr Genet. 2015;61(3):253.
  • Dubovskiy IM, Whitten MMA, Kryukov VY, et al. More than a colour change: insect melanism, disease resistance and fecundity. Proc R Soc B. 2013a;280(1763):p.20130584.
  • Dubovskiy IM, Whitten MMA, Yaroslavtseva ON, et al. Can Insects Develop Resistance to Insect Pathogenic Fungi? Plos One. 2013b;8(4):60248.
  • Mukherjee K, Vilcinskas A. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection. Virulence. 2018;9(1):402–413.
  • Wojda I. Immunity of the greater wax moth Galleria mellonella. Insect Sci. 2017;24(3):342–357.
  • Mukherjee K, Grizanova E, Chertkova E, et al. Experimental evolution of resistance against Bacillus thuringiensis in the insect model host Galleria mellonella results in epigenetic modifications. Virulence. 2017;8(8):1618–1630.
  • Lim J, Coates CJ, Seoane PI, et al. Characterizing the mechanisms of nonopsonic uptake of Cryptococci by macrophages. J Immunol. 2018;200(10):3539–3546.
  • Champion OL, Wagley S, Titball RW. “Galleria mellonella as a model host for microbiological and toxin research.”. Virulence. 2016;7(7):840–845.
  • Lange A, Beier S, Huson DH, et al. Genome Sequence of Galleria mellonella (Greater Wax Moth). Genome Announc. 2018;6(2). DOI:10.1128/genomeA.01220-17
  • Wedde M, Weise C, Nuck R, et al. The insect metalloproteinase inhibitor gene of the lepidopteran Galleria mellonella encodes two distinct inhibitors. Biol Chem. 2007;388(1):119–127.
  • Whitten MMA, Tew IF, Lee BL, et al. A novel role for an insect apolipoprotein (Apolipophorin III) in beta-1,3-glucan pattern recognition and cellular encapsulation reactions. J Iimmunol. 2004;172(4):2177–2185.
  • Whitten MMA, Coates CJ. Re-evaluation of insect melanogenesis research: views from the dark side. Pigment Cell Melanoma Res. 2017;30(4):386–401.
  • Grizanova EV, Semenova AD, Komarov DA, et al. Maintenance of redox balance by antioxidants in hemolymph of the greater wax moth Galleria mellonella larvae during encapsulation response. Arch Insect Biochem Physiol. 2018;98(4): e21460.
  • Wang C, Wang S. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol. 2017;62:73–90.
  • Paterson IC, Charnley AK, Cooper RM, et al. Partial characterization of specific inducers of a cuticle-degrading protease from the insect pathogenic fungus Metarhizium anisopliae. Microbiology. 1994;140(11):3153–3159.
  • Wyrebek M, Bidochka MJ. Variability in the insect and plant adhesins, Mad1 and Mad2, within the fungal genus Metarhizium suggest plant adaptation as an evolutionary force. PloS One. 2013;8(3):e59357.
  • Barelli L, Padilla-Guerrero IE, Bidochka MJ. Differential expression of insect and plant specific adhesin genes, Mad1 and Mad2, in Metarhizium robertsii. Fungal Biol. 2011;115(11):1174–1185.
  • Fang W, Pei Y, Bidochka MJ. A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology. 2007;153(Pt 4):1017–1025.
  • Screen S, Bailey A, Charnley K, et al. Isolation of a nitrogen response regulator gene (nrr1) from Metarhizium anisopliae. Gene. 1998;221(1):17–24.
  • St. Leger R, Cooper RM, Charnley AK. The effect of melanization of Manduca sexta cuticle on growth and infection by Metarhizium anisopliae. J Invertebr Pathol. 1988;52(3):459–470.
  • St. Leger RJ, Joshi L, Roberts D. Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl Environ Microbiol. 1998;64(2):709–713.
  • Bagga S, Hu G, Screen SE, et al. Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene. 2004;324:159–169.
  • Andreis FC, Schrank A, Thompson CE. Molecular evolution of Pr1 proteases depicts ongoing diversification in Metarhizium spp. Mol Genet Genomics. 2019;1–17.
  • Wang C, Typas MA, Butt TM. Detection and characterisation of pr1 virulent gene deficiencies in the insect pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett. 2002;213(2):251–255.
  • Rosas-García NM, Ávalos-de-León O, Villegas-Mendoza JM, et al. Correlation between pr1 and pr2 Gene Content and Virulence in Metarhizium anisopliae Strains. J Microbiol Biotechnol. 2014;24(11):1495–1502.
  • Golo PS, Santos HA, Perinotto WM, et al. The influence of conidial Pr1 protease on pathogenicity potential of Metarhizium anisopliae senso latu to ticks. Parasitol Res. 2015;114(6):2309–2315.
  • Shah FA, Wang CS, Butt TM. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett. 2005;251(2):259–266.
  • Lin L, Fang W, Liao X, et al. The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons. Plos One. 2011;6(12):e28984.
  • Crespo R, Juarez MP, Dal Bello GM, et al. Increased mortality of Acanthoscelides obtectus by alkane-grown Beauveria bassiana. Biocontrol. 2002;47:685–696.
  • Jarrold SL, Moore D, Potter U, et al. The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle. Mycol Res. 2007;111(2):240–249.
  • Kryukov VY, Yaroslavtseva ON, Whitten MM, et al. Fungal infection dynamics in response to temperature in the lepidopteran insect Galleria mellonella. Insect Sci. 2018;25(3):454–466.
  • Ghosh A. Small heat shock proteins (HSP12, HSP20 and HSP30) play a role in Ustilago maydis pathogenesis. FEMS Microbiol Lett. 2014;361(1):17–24.
  • Bailao AM, Schrank A, Borges CL, et al. Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infect. 2006;8(12-13):2686–2697.
  • Huarte-Bonnet C, Juárez MP, Pedrini N. Oxidative stress in entomopathogenic fungi grown on insect-like hydrocarbons. Curr Genet. 2015;61(3):289–297.
  • Zhang LB, Feng MG. Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Appl Microbiol Biotechnol. 2018;102:4995–5004.
  • Chertkova EA, Grizanova EV, Dubovskiy IM. Bacterial and fungal infections induce bursts of dopamine in the haemolymph of the Colorado potato beetle Leptinotarsa decemlineata and greater wax moth Galleria mellonella. J Invertebr Pathol. 2018;153:203–206.
  • St Leger RJ, Joshi L, Bidochka MJ, et al. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Nat Acad Sci. 1996;93(13):6349–6354.
  • Cerenius L, Lee BL, Kenneth S. “The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 2008;29(6):263–271.
  • Coates CJ, Lim J, Harman K, et al. The insect, Galleria mellonella, is a compatible model for evaluating the toxicology of okadaic acid. Cell Biol Toxicol. 2019;35:219–232.
  • Stączek S, Zdybicka-Barabas A, Mak P, et al. Studies on localization and protein ligands of Galleria mellonella apolipophorin III during immune response against different pathogens. J Insect Physiol. 2018;105:18–27.
  • Ment D, Gindin G, Rot A, et al. Novel technique for quantifying adhesion of Metarhizium anisopliae conidia to the tick cuticle. Appl Environ Microbiol. 2010;76(11):3521–3528.
  • Fang W, Bidochka MJ. Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycol Res. 2006;110(10):1165–1171.