8,352
Views
74
CrossRef citations to date
0
Altmetric
Review Article

Immune priming: the secret weapon of the insect world

, &
Pages 238-246 | Received 05 Sep 2019, Accepted 03 Jan 2020, Published online: 21 Feb 2020

References

  • Ben-Dov Y. A systematic catalogue of the soft scale insects of the world (Homoptera: Coccoidea:Coccidae): with data on geographical distribution, host plants, biology, and economics importance. Biology. 1993;1.
  • Leonardi MS, Crespo EA, Raga JA, et al. Scanning electron microscopy of antarctophthirus microchir (Phthiraptera: Anoplura: Echinophthiriidae): studying morphological adaptations to aquatic life. Micron. 2012;43(9):929–936.
  • Purcell AH, Almeida RPP. Insects as vectors of disease agents. In: Encyclopedia of plant and crop science; 2004. p. 1–14. DOI:https://doi.org/10.1081/e-epcs-120010496.
  • Downes JA. Adaptations of Insects in the Arctic. Annu Rev Entomol. 1965;10(1):257–274.
  • Sheehan G, Garvey A, Croke M, et al. Innate humoral immune defences in mammals and insects: the same, with differences? Virulence. 2018;9(1):1625–1639.
  • Ratcliffe NA. Invertebrate Immunity - A Primer for the Non-Specialist. Immunol Lett. 1985;10(5):253–270.
  • Vilmos P, Kurucz É. Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol Lett. 1998;62:59–66.
  • Boman HG, Hultmark D. Cell-free immunity in insects. Trends Biochem Sci. 1981;6:306–309.
  • Price CD, Ratcliffe NA. A reappraisal of insect haemocyte classification by the examination of blood from fifteen insect orders. Zeitschrift für Zellforsch und mikroskopische Anat. 1974;147(4):537–549.
  • Strand MR. Insect hemocytes and their role in immunity. Insect Immunol. 2008;32:25–47.
  • Yu XQ, Kanost MR. Binding of hemolin to bacterial lipopolysaccharide and lipoteichoic acid: an immunoglobulin superfamily member from insects as a pattern-recognition receptor. Eur J Biochem. 2002;269(7):1827–1834.
  • Bilej M. Mucosal Immunity in Invertebrates. In: Mucosal immunology. Fourth ed. Vols. 1–2; 2015. p. 135–144. DOI:https://doi.org/10.1016/B978-0-12-415847-4.00009-4.
  • Zhang G, Ghosh S. Toll-like receptor-mediated NF-ΚB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Investig. 2001;107:13–19.
  • Lemaitre B, Hoffmann J. The host defense of drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743.
  • Silverman N, Maniatis T. NF-ΚB signaling pathways in mammalian and insect innate immunity. Genes Dev. 2001;15:2321–2342.
  • Ragland SA, Criss AK. From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoS Pathog. 2017;13:e1006512.
  • Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4(7):597–603.
  • Goto A, Kumagai T, Kumagai C, et al. A drosophila haemocyte-specific protein, hemolectin, similar to human von willebrand factor. Biochem J. 2001;359(Pt 1):99–108.
  • Loof TG, Schmidt O, Herwald H, et al. Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins? J Innate Immun. 2011;3(1):34–40.
  • Cerenius L, Kawabata SI, Lee BL, et al. Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci. 2010;35:575–583.
  • Shokal U, Eleftherianos I. Evolution and function of thioester-containing proteins and the complement system in the innate immune response. Front Immunol. 2017;8. DOI:https://doi.org/10.3389/fimmu.2017.00759.
  • Cerenius L, Lee BL, Söderhäll K. The ProPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 2008;29:263–271.
  • Chen YY, Chen JC, Lin YC, et al. Endogenous molecules induced by a pathogen-associated molecular pattern (PAMP) elicit innate immunity in shrimp. PLoS One. 2014;9:12.
  • Kleino A, Silverman N. The drosophila IMD pathway in the activation of the humoral immune response. Dev Comp Immunol. 2014;42(1):25–35.
  • Liu ZG. Molecular mechanism of TNF signaling and beyond. Cell Res. 2005;15:24–27.
  • Brennan M, Thomas DY, Whiteway M, et al. Correlation between virulence of candida albicans mutants in mice and galleria mellonella larvae. FEMS Immunol Med Microbiol. 2002;34(2):153–157.
  • Jander G, Rahme LG, Ausubel FM. Positive correlation between virulence of pseudomonas aeruginosa mutants in mice and insects. J Bacteriol. 2000;182(13):3843–3845.
  • Alarco A-M, Marcil A, Chen J, et al. Immune-deficient drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J Immunol. 2004;172(9):5622–5628.
  • Chamilos G, Samonis G, Kontoyiannis PD. Drosophila melanogaster as a model host for the study of microbial pathogenicity and the discovery of novel antimicrobial compounds. Curr Pharm Des. 2011;17(13):1246–1253.
  • Kelly J, Kavanagh K. Caspofungin primes the immune response of the larvae of galleria mellonella and induces a non-specific antimicrobial response. J Med Microbiol. 2011;60(2):189–196.
  • Maurer E, Browne N, Surlis C, et al. Galleria mellonella as a host model to study aspergillus terreus virulence and amphotericin B resistance. Virulence. 2015;6(6):1–8.
  • Maguire R, Duggan O, Kavanagh K. Evaluation of galleria mellonella larvae as an in vivo model for assessing the relative toxicity of food preservative agents. Cell Biol Toxicol. 2016;32(3):209–216.
  • Allegra E, Titball RW, Carter J, et al. Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere. 2018;198:469–472.
  • Hamamoto H, Tonoike A, Narushima K, et al. Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comp Biochem Physiol - C Toxicol Pharmacol. 2009;149(3):334–339.
  • McCann M, Santos ALS, Da Silva BA, et al. In vitro and in vivo studies into the biological activities of 1,10-Phenanthroline, 1,10-Phenanthroline-5,6-Dione and Its Copper(Ii) and Silver(i) complexes. Toxicol Res (Camb). 2012;1(1):47–54.
  • Cooper D, Eleftherianos I. Memory and specificity in the insect immune system: current perspectives and future challenges. Front Immunol. 2017;8:539.
  • Ardia DR, Gantz JE, Schneider BC, et al. Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity. Funct Ecol. 2012;26(3):732–739.
  • Moret Y, Schmid-Hempel P. Survival for immunity: the price of immune system activation for bumblebee workers. Science. 2000;290(5494):1166–1168.
  • Fallon JP, Troy N, Kavanagh K. Pre-exposure of galleria mellonella larvae to different doses of aspergillus fumigatus conidia causes differential activation of cellular and humoral immune responses. Virulence. 2015 June;2011(2):413–421.
  • Matha V, Áček Z. Changes in haemocyte counts in galleria mellonella (L.) (Lepidoptera: Galleriidae) larvae infected with steinernema Sp. (Nematoda: Steinernematidae). Nematologica. 2010;30(1):86–89.
  • Bergin D, Murphy L, Keenan J, et al. Pre-exposure to yeast protects larvae of galleria mellonella from a subsequent lethal infection by candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect. 2006;8(8):2105–2112.
  • Browne N, Hackenberg F, Streciwilk W, et al. Assessment of in vivo antimicrobial activity of the carbene silver(I) acetate derivative SBC3 using galleria mellonella larvae. BioMetals. 2014;27(4):745–752.
  • Morton DB, Dunphy GB, Chadwick JS. Reactions of hemocytes of immune and non-immune galleria mellonella larvae to proteus mirabilis. Dev Comp Immunol. 1987;11(1):47–55.
  • Pham LN, Dionne MS, Shirasu-Hiza M, et al. A specific primed immune response in drosophila is dependent on phagocytes. PLoS Pathog. 2007;3:3.
  • Sadd BM, Schmid-Hempel P. Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol. 2006;16(12):1206–1210.
  • Mowlds P, Coates C, Renwick J, et al. Dose-dependent cellular and humoral responses in galleria mellonella larvae following β-glucan inoculation. Microbes Infect. 2010;12(2):146–153.
  • Reber A, Chapuisat M. No evidence for immune priming in ants exposed to a fungal pathogen. PLoS One. 2012;7:4.
  • Heinze J, Walter B. Moribund ants leave their nests to die in social isolation. Curr Biol. 2010;20(3):249–252.
  • Starks PT, Blackie CA, Seeley TD. Fever in honeybee colonies. Naturwissenschaften. 2000;87(5):229–231.
  • Li JY, Chen X, Fan W, et al. Proteomic and bioinformatic analysis on endocrine organs of domesticated silkworm, Bombyx Mori L. for a comprehensive understanding of their roles and relations. J Proteome Res. 2009;8(6):2620–2632.
  • Freitak D, Knorr E, Vogel H, et al. Gender- and Stressor-Specific MicroRNA Expression in Tribolium Castaneum. Biol Lett. 2012;8(5):860–863.
  • Pletcher SD, Libert S, Skorupa D. Flies and their golden apples: the effect of dietary restriction on drosophila aging and age-dependent gene expression. Ageing Res Rev. 2005;4:451–480.
  • Browne N, Surlis C, Maher A, et al. Prolonged pre-incubation increases the susceptibility of galleria mellonella larvae to bacterial and fungal infection. Virulence. 2015 March;2015(6):37–41.
  • Kurtz J. Specific Memory within Innate Immune Systems. Trends Immunol. 2005;26(4):186–192.
  • Dhinaut J, Chogne M, Moret Y. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. J Anim Ecol. 2018;87(2):448–463.
  • Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/toll/cactus controls the potent antifungal response in drosophila adults. Cell. 1996;86(6):973–983.
  • Rowley AF, Powell A. Invertebrate immune systems–specific, quasi-specific, or nonspecific? J Immunol. 2007;179(11):7209–7214.
  • Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci U S A. 2011;108(48):19288–19292.
  • Cellura C, Toubiana M, Parrinello N, et al. Specific expression of antimicrobial peptide and HSP70 genes in response to heat-shock and several bacterial challenges in mussels. Fish Shellfish Immunol. 2007;22(4):340–350.
  • De Gregorio E, Spellman PT, Rubin GM, et al. Genome-wide analysis of the drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A. 2001;98(22):12590–12595.
  • Irving P, Troxler L, Heuer TS, et al. A genome-wide analysis of immune responses in drosophila. Proc Natl Acad Sci U S A. 2001;98(26):15119–15124.
  • Little TJ, Kraaijeveld AR. Ecological and evolutionary implications of immunological priming in invertebrates. Trends Ecol Evol. 2004;19:58–60.
  • Dubuffet A, Zanchi C, Boutet G, et al. Trans-generational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. PLoS Pathog. 2015;11:10.
  • Talaei-Hassanloui R, Bakhshaei R, Hosseininaveh V, et al. Effect of midgut proteolytic activity on susceptibility of lepidopteran larvae to bacillus thuringiensis subsp. Kurstaki. Front Physiol. 2014 January 4;4. DOI:https://doi.org/10.3389/fphys.2013.00406.
  • Richard FJ, Aubert A, Grozinger CM. Modulation of social interactions by immune stimulation in honey bee, apis mellifera, workers. BMC Biol. 2008;6. DOI:https://doi.org/10.1186/1741-7007-6-50.
  • Dean P, Richards EH, Edwards JP, et al. Microbial infection causes the appearance of hemocytes with extreme spreading ability in monolayers of the tobacco hornworm manduca sexta. Dev Comp Immunol. 2004;28(7–8):689–700.
  • Watson FL, Püttmann-Holgado R, Thomas F, et al. Immunology: extensive diversity of Ig-superfamily proteins in the immune system of insects. Science. 2005;309(5742):1874–1878.
  • Moret Y. “Trans-generational immune priming”: specific enhancement of the antimicrobial immune response in the mealworm beetle, tenebrio molitor. Proc R Soc B Biol Sci. 2006;273(1592):1399–1405.
  • Knorr E, Schmidtberg H, Arslan D, et al. Translocation of bacteria from the gut to the eggs triggers maternal transgenerational immune priming in tribolium castaneum. Biol Lett. 2015;11:12.
  • López JH, Schuehly W, Crailsheim K, et al. Trans-generational immune priming in honeybees. Proc R Soc B Biol Sci. 1785;2014(281). DOI:https://doi.org/10.1098/rspb.2014.0454
  • Tidbury HJ, Pedersen AB, Boots M. Within and transgenerational immune priming in an insect to a DNA virus. Proc R Soc B. 2011;278:871–876.
  • Contreras-Garduño J, Rodríguez MC, Hernández-Martínez S, et al. Plasmodium berghei induced priming in anopheles albimanus independently of bacterial co-infection. Dev Comp Immunol. 2015;52(2):172–181.
  • Sun J, Deng WM. Hindsight mediates the role of notch in suppressing hedgehog signaling and cell proliferation. Dev Cell. 2007;12(3):431–442.
  • Trauer U, Hilker M. Parental legacy in insects: variation of transgenerational immune priming during offspring development. PLoS One. 2013;8:5.