2,159
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

New insights into the evolution of host specificity of three Penicillium species and the pathogenicity of P. Italicum involving the infection of Valencia orange (Citrus sinensis)

, , , , , , , , , & show all
Pages 748-768 | Received 05 Oct 2019, Accepted 29 Mar 2020, Published online: 11 Jun 2020

References

  • Jacques MA, Arlat M, Boulanger A, et al. Using ecology, physiology, and genomics to understand host specificity in Xanthomonas. Annu Rev Phytopathol. 2016;54(163–187).
  • Stukenbrock EH. Evolution, selection and isolation: A genomic view of speciation in fungal plant pathogens. New Phytol. 2013;199(4):895–907.
  • Friesen TL, Stukenbrock EH, Liu Z, et al. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet. 2006;38(8):953–956.
  • Giraud T, Gladieux P, Gavrilets S. Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol Evol. 2010;25(7):387–395.
  • Vilanova L, Vinas I, Torres R, et al. Infection capacities in the orange-pathogen relationship: Compatible (Penicillium digitatum) and incompatible (Penicillium expansum) interactions. Food Microbiol. 2012;29(1):56–66.
  • Marcet-Houben M, Ballester AR, de la Fuente B, et al. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genomics. 2012;13:646.
  • Ballester A-R, Marcet-Houben M, Levin E, et al. Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights Into secondary metabolism and pathogenicity. Mol Plant Microbe Interact. 2015;28(3):232–248.
  • Li B, Zong Y, Du Z, et al. Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium species. Mol Plant Microbe Interact. 2015;28(6):635–647.
  • Julca I, Droby S, Sela N, et al. Contrasting genomic diversity in two cosely related postharvest pathogens: Penicillium digitatum and Penicillium expansum. Genome Biol Evol. 2016;8(1):218–227.
  • Marcet-Houben M, Gabaldon T. Horizontal acquisition of toxic alkaloid synthesis in a clade of plant associated fungi. Fungal Genet Biol. 2016;86:71–80.
  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43(D1):D222–D226.
  • Ma M, Wang Z, Li L, et al. Complete genome sequence of Paenibacillus mucilaginosus 3016, a bacterium functional as microbial fertilizer. J Bacteriol. 2012;194(10):2777–2778.
  • Niehaus EM, Muensterkoetter M, Proctor RH, et al. Comparative “omics” of the fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol Evol. 2016;8(11):3574–3599.
  • Sanchez-Vallet A, Fouche S, Fudal I, et al. The genome biology of effector gene evolution in filamentous plant pathogens. Annu Rev Phytopathol. 2018;56(1):21–40.
  • Lu S, Edwards MC. Genome-wide analysis of small secreted cysteine-rich proteins identifies candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions. Phytopathology. 2016;106(2):166–176.
  • Garrigues S, Gandia M, Castillo L, et al. Three antifungal proteins from Penicillium expansum: Different patterns of production and antifungal activity. Front Microbiol. 2018;9:2370.
  • Looi HK, Toh YF, Yew SM, et al. Genomic insight into pathogenicity of dematiaceous fungus Corynespora cassiicola. Peer J. 2017;5:e2841.
  • Satjarak A, Graham LE, Verbruggen H. Genome-wide analysis of carbohydrate-active enzymes Pyramimonas parkeae (Prasinophyceae). J Phycol. 2017;53(5):1072–1086.
  • Bautista-Banos S. Postharvest Decay Control Strategies. Chapter 2 Penicillium digitatum, Penicillium italicum (Green Mold, Blue Mold); Elsevier, Academic Press; 2014, p.45–102.
  • Banani H, Marcet-Houben M, Ballester AR, et al. Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genomics. 2016;17(1):19.
  • Yoshida K, Saunders DGO, Mitsuoka C, et al. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics. 2016;17(1):370.
  • Shen Q, Liu Y, Naqvi NI. Fungal effectors at the crossroads of phytohomone singaling. Curr Opin Microbiol. 2018;46:1–6.
  • Lopez D, Ribeiro S, Label P, et al. Genome-wide analysis of Corynespora cassiicola leaf fall disease putative effectors. Front Microbiol. 2018;9:276.
  • Moreira LRS, Filho EXF. An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol. 2008;79(2):165–178.
  • Del Carmen Rodriguez-Gacio M, Iglesias-Fernandez R, Carbonero P, et al. Softening-up mannan-rich cell walls. J Exp Bot. 2012;63(11):3975–3988.
  • Baath JA, Giummarella N, Klaubauf S, et al. A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds. FEBS Lett. 2016;590(16):2611–2618.
  • Kumamoto CA. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat Rev Microbiol. 2008;6(9):667–673.
  • Que Y, Xu L, Wu Q, et al. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. BMC Genomics. 2014;15(1):996.
  • Dean RA, Talbot NJ, Ebbole DJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005;434(7036):980–986.
  • Goldstone JV, Goldstone HMH, Morrison AM, et al. Cytochrome p450 1 genes in early deuterostomes (tunicates and sea urchins) and vertebrates (chicken and frog): Origin and diversification of the CYP1 gene family. Mol Biol Evol. 2007;24(12):2619–2631.
  • Fox EM, Howlett BJ. Secondary metabolism: regulation and role in fungal biology.Curr Opin Microbiol. [2008]; 11(6):481–487.
  • Hu X, Xiao G, Zheng P, et al. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci U S A. 2014;111(47):16796–16801.
  • Ma LJ, van der Does HC, Borkovich KA, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464(7287):367–373.
  • Wang S, Leclerque A, Pava-Ripoll M, et al. Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae. Eukaryot Cell. 2009;8(6):888–898.
  • Sharma R, Mishra B, Runge F, et al. Gene loss rather than gene gain Is associated with a host jump from monocots to dicots in the smut fungus Melanopsichium pennsylvanicum. Genome Biol Evol. 2014;6(8):2034–2049.
  • Elbarbary RA, Lucas BA, Maquat LE. Retrotransposons as regulators of gene expression. Science. 2016;351(6274).
  • Zhang L, Huang X, He C, et al. Novel fungal pathogenicity and leaf defense strategies are revealed by simultaneous transcriptome analysis of Colletotrichum fructicola and strawberry infected by this fungus. Front Plant Sci. 2018;9:434.
  • Li P, Liu W, Zhang Y, et al. Fungal canker pathogens trigger carbon starvation by inhibiting carbon metabolism in poplar stems. Sci Rep. 2019;9(1):10111.
  • Wu G, Ii WM J, Lichtner FJ, et al. Whole-genome comparisons of Penicillium spp. reveals secondary metabolic gene clusters and candidate genes associated with fungal aggressiveness during apple fruit decay. Peer J. 2019;7:e6170.
  • Houterman PM, Cornelissen BJC, Rep M. Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog. 2008;4(5):e1000061.
  • El Hadrami A, El-Bebany AF, Yao Z, et al. Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era. Int J Mol Sci. 2012;13(6):7237–7259.
  • Bradshaw RE, Guo Y, Sim AD, et al. Genome-wide gene expression dynamics of the fungal pathogen Dothistroma septosporum throughout its infection cycle of the gymnosperm host Pinus radiata. Mol Plant Pathol. 2016;17(2):210–224.
  • Alkan N, Friedlander G, Ment D, et al. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytol. 2015;205(2):801–815.
  • Zheng F, Wu H, Zhang R, et al. Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. BMC Genomics. 2016;17(1):402.
  • Tayeh C, Randoux B, Vincent D, et al. Exogenous trehalose induces defenses in wheat before and during a biotic stress caused by powdery mildew. Phytopathology. 2014;104(3):293–305.
  • Zhang H, Hong Y, Huang L, et al. Virus-induced gene silencing-based functional analyses revealed the involvement of several putative trehalose-6-phosphate synthase/phosphatase genes in disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato. Front Plant Sci. 2016;7:1176.
  • Wingler A. The function of trehalose biosynthesis in plants. Phytochemistry. 2002;60(5):437–440.
  • Sanchez-Rangel D, Rivas-San Vicente M, Eugenia de la Torre-hernandez M, et al. Deciphering the link between salicylic acid signaling and sphingolipid metabolism. Front Plant Sci. 2015;6:125.
  • La Mantia J, Unda F, Douglas CJ, et al. Overexpression of AtGolS3 and CsRFS in poplar enhances ROS tolerance and represses defense response to leaf rust disease. Tree Physiol. 2018;38(3):457–470.
  • Aksic MMF, Dabic DC, Gasic UM, et al. Polyphenolic profile of pear leaves with different resistance to pear psylla (Cacopsylla pyri). J Agric Food Chem. 2015;63(34):7476–7486.
  • Birney E, Durbin R. Using GeneWise in the Drosophila annotation experiment. Genome Res. 2000;10(4):547–548.
  • Stanke M, Keller O, Gunduz I, et al. AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34(Web Server):W435–W439.
  • Khaldi N, Seifuddin FT, Turner G, et al. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol. 2010;47(9):736–741.
  • Kall L, Krogh A, Sonnhammer ELL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004;338(5):1027–1036.
  • Ernst J, Bar-Joseph Z. STEM: A tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7(1):191.
  • Ruan J, Li H, Chen Z, et al. TreeFam: 2008 update. Nucleic Acids Res. 2008;36(Database):D735–D740.
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797.
  • Cui Y, Yu C, Yan Y, et al. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A. 2013;110(2):577–582.
  • Yang ZH, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000;17(1):32–43.
  • Nikoh N, McCutcheon JP, Kudo T, et al. Bacterial genes in the aphid genome: Absence of functional gene transfer from Buchnera to its host. PLoS Genet. 2010;6(2):e1000827.
  • Li R, Yu C, Li Y, et al. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–1967.
  • Li B, Dewey CN. RSEM: Accurate transcript quantific4ation from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
  • Tarazona S, Furio-Tari P, Turra D, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015;43(21):e140.
  • Jiang G, Xiao L, Yan H, et al. Redox regulation of methionine in calmodulin affects the activity levels of senescence-related transcription factors in litchi. Biochim Biophys Acta Gen Subj. 2017;1861(5):1140–1151.
  • Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–1083.
  • Chen D, Lin S, Xu W, et al. Qualitative and quantitative analysis of the major constituents in shexiang tongxin dropping Pill by HPLC-Q-TOF-MS/MS and UPLC-QqQ-MS/MS. Molecules. 2015;20(10):18597–18619.
  • Hsu HH, Araki M, Mochizuki M, et al. A systematic approach to timeseries metabolite profiling and RNA-seq analysis of Chinese hamster ovary cell culture. Sci Rep. 2017;7:43518.