1,382
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Aminoglycoside riboswitch control of the expression of integron associated aminoglycoside resistance adenyltransferases

, , , , , , , & show all
Pages 1432-1442 | Received 18 Mar 2020, Accepted 04 Oct 2020, Published online: 24 Oct 2020

References

  • Carter AP, Clemons WM, Brodersen DE, et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature. 2000;407:340–348.
  • Davies J, Davis BD. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J Biol Chem. 1968;243:3312–3316.
  • Fourmy D, Recht MI, Blanchard SC, et al. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science. 1996;274(5291):1367–1371.
  • Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78(1):119–146.
  • Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother. 1999;43:727–737.
  • Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol. 2006;4:608–620.
  • Deng Y, Bao X, Ji L, et al. Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob. 2015;14(1):45.
  • MacDonald D, Demarre G, Bouvier M, et al. Structural basis for broad DNA-specificity in integron recombination. Nature. 2006;440(7088):1157–1162.
  • Partridge SR, Recchia GD, Scaramuzzi C, et al. Definition of the attI1 site of class 1 integrons. Microbiology (Reading, Engl). 2000;146(Pt 11):2855–2864.
  • Davies J, Davies D. Origins and Evolution of Antibiotic Resistance. Microbiol Mol Biol Rev. 2010;74:417–433.
  • Nivina A, Escudero JA, Vit C, et al. Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites. Nucleic Acids Res. 2016;44(16):7792–7803.
  • Jacquier H, Zaoui C, Sanson‐le Pors M, et al. Translation regulation of integrons gene cassette expression by the attC sites. Mol Microbiol. 2009;72:1475–1486.
  • Escudero JA, Loot C, Nivina A, et al. The Integron: adaptation On Demand. Microbiol Spectr. 2015;3:MDNA3-0019–2014.
  • McCarthy JE, Gualerzi C. Translational control of prokaryotic gene expression. Trends Genet. 1990;6:78–85.
  • Hanau-Berçot B, Podglajen I, Casin I, et al. An intrinsic control element for translational initiation in class 1 integrons. Mol Microbiol. 2002;44:119–130.
  • Gupta P, Sothiselvam S, Vázquez-Laslop N, et al. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nat Commun. 2013;4(1):1984.
  • Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5(3):175–186.
  • Yanofsky C. Attenuation in the control of expression of bacterial operons. Nature. 1981;289(5800):751–758.
  • Stroynowski I, van Cleemput M, Yanofsky C. Superattenuation in the tryptophan operon of Serratia marcescens. Nature. 1982;298(5869):38–41.
  • Dubnau D. Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics. CRC Crit Rev Biochem. 1984;16:103–132.
  • Weisblum B. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother. 1995;39:797–805.
  • Vazquez-Laslop N, Thum C, Mankin AS. Molecular mechanism of drug-dependent ribosome stalling. Mol Cell. 2008;30(2):190–202.
  • Kwak JH, Choi EC, Weisblum B. Transcriptional attenuation control of ermK, a macrolide-lincosamide-streptogramin B resistance determinant from Bacillus licheniformis. J Bacteriol. 1991;173:4725–4735.
  • Dar D, Sorek R. Regulation of antibiotic-resistance by non-coding RNAs in bacteria. Curr Opin Microbiol. 2017;36:111–117.
  • Dersch P, Khan MA, Mühlen S, et al. Roles of regulatory RNAs for antibiotic resistance in bacteria and their potential value as novel drug targets. Front Microbiol 2017 [cited 2018 Sep 13]; 8. Available from. http://journal.frontiersin.org/article/https://doi.org/10.3389/fmicb.2017.00803/full
  • Serganov A, Nudler E. A decade of riboswitches. Cell. 2013;152(1–2):17–24.
  • Breaker RR. Prospects for riboswitch discovery and analysis. Mol Cell. 2011;43(6):867–879.
  • Flatt PM, Mahmud T. Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat Prod Rep. 2007;24(2):358–392.
  • Kudo F, Eguchi T. Biosynthetic genes for aminoglycoside antibiotics. J Antibiot. 2009;62(9):471–481.
  • Sengupta S, Chattopadhyay MK, Grossart H-P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 2013;4:47.
  • Davies J. What are antibiotics? Archaic functions for modern activities. Mol Microbiol. 1990;4(8):1227–1232.
  • Stamatopoulou V, Apostolidi M, Li S, et al. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors. Nucleic Acids Res. 2017;45(17):10242–10258.
  • Hoffman LR, D’Argenio DA, MacCoss MJ, et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436(7054):1171–1175.
  • Baharoglu Z, Mazel D. Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance. Antimicrob Agents Chemother. 2011;55(5):2438–2441.
  • Jia X, Zhang J, Sun W, et al. Riboswitch control of aminoglycoside antibiotic resistance. Cell. 2013;152:68–81.
  • Wang S, He W, Sun W, et al. Integron-derived aminoglycoside-sensing riboswitches control aminoglycoside acetyltransferase resistance gene expression. Antimicrob Agents Chemother. 2019;63:e00236–19.
  • Yao Z, Weinberg Z, Ruzzo WL. CMfinder–a covariance model based RNA motif finding algorithm. Bioinformatics. 2006;22:445–452.
  • O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–745. .
  • Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29(22):2933–2935.
  • Weinberg Z, Breaker RR. R2R–software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics. 2011;12:3.
  • Bailey M, Chettiath T, Mankin AS. Induction of erm(C) expression by noninducing antibiotics. Antimicrob Agents Chemother. 2008;52:866–874.
  • Zhang X, Bremer H. Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem. 1995;270(19):11181–11189.
  • Moon MH, Hilimire TA, Sanders AM, Schneekloth JS. Measuring. RNA-ligand interactions with microscale thermophoresis. Biochemistry. 2018;57:4638–4643.
  • Collis CM, Grammaticopoulos G, Briton J, et al. Site-specific insertion of gene cassettes into integrons. Mol Microbiol. 1993;9(1):41–52.
  • He W, Zhang X, Zhang J, et al. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases. RNA Biol. 2013;10(8):1266–1273.
  • Chan CS, Bay DC, Leach TGH, et al. “Come into the fold”: A comparative analysis of bacterial redox enzyme maturation protein members of the NarJ subfamily. Biochim Biophys Acta. 2014;1838:2971–2984.
  • Chen D, Murchie AIH. An aminoglycoside sensing riboswitch controls the expression of aminoglycoside resistance acetyltransferase and adenyltransferases. Biochim Biophys Acta. 2014: 1839:951–958.
  • Vázquez-Laslop N, Mankin AS. How macrolide antibiotics work. Trends Biochem Sci. 2018;43(9):668–684.
  • Jaimee G, Halami PM. Conjugal transfer of aac(6ʹ)Ie-aph(2″)Ia gene from native species and mechanism of regulation and cross resistance in Enterococcus faecalis MCC3063 by real time-PCR. Microb Pathog. 2017;110:546–553.
  • Williams JW, Northrop DB. Purification and properties of gentamicin acetyltransferase I. Biochemistry. 1976;15(1):125–131.