1,389
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Parasitoid wasp venom vesicles (venosomes) enter Drosophila melanogaster lamellocytes through a flotillin/lipid raft-dependent endocytic pathway

, & ORCID Icon
Pages 1512-1521 | Received 09 Jul 2020, Accepted 14 Oct 2020, Published online: 31 Oct 2020

References

  • Pennacchio F, Strand M. Evolution of developmental strategies in parasitic Hymenoptera. Annu Rev Entomol. 2006;51:233–258.
  • Van Lenteren J, Bolckmans K, Köhl J, et al. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. 2017;63:39–59.
  • Carton Y, Kitano H. Changes in the hemocyte population of Drosophila larvae after single and multiple parasitization by Cothonaspis (Parasitic Cynipidae). J Invertebr Pathol. 1979;34:88–89.
  • Russo J, Dupas S, Frey F, et al. Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology. 1996;112:135–142.
  • Carton Y, Poirié M, Nappi AJ. Insect immune resistance to parasitoids. Insect Sci. 2008;15:67–87.
  • Poirié M, Carton Y, Dubuffet A. Virulence strategies in parasitoid Hymenoptera as an example of adaptive diversity. C R Biol. 2009;332:311–320.
  • Honti V, Csordás G, É K, et al. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. Dev Comp Immunol. 2014;42:47–56.
  • Kim-Jo C, Gatti J-L, Poirié M. Drosophila cellular immunity against parasitoid wasps: a complex and time-dependent process. Front Physiol. 2019;10:e1005746–8.
  • Dupas S, Brehelin M, Frey F, et al. Immune suppressive virus-like particles in a Drosophila parasitoid: significance of their intraspecific morphological variations. Parasitology. 1996;113:207–212.
  • Labrosse C, Carton Y, Dubuffet A, et al. Active suppression of D. melanogaster immune response by long gland products of the parasitic wasp Leptopilina boulardi. J Insect Physiol. 2003;49:513–522.
  • Morales J, Chiu H, Oo T, et al. Biogenesis, structure, and immune-suppressive effects of virus-like particles of a Drosophila parasitoid, Leptopilina victoriae. J Insect Physiol. 2005;51:181–195.
  • Gueguen G, Rajwani R, Paddibhatla I, et al. VLPs of Leptopilina boulardi share biogenesis and overall stellate morphology with VLPs of the heterotoma clade. Virus Res. 2011;160:159–165.
  • Gatti J-L, Schmitz A, Colinet D, et al. Diversity of virus-like particles in parasitoids’ venom: viral or cellular origin? In: Beckage NE, Drezen J-M, editors. Parasitoid viruses: symbionts or pathogens. Elsevier; 2012. p. 181–192. DOI:https://doi.org/10.1016/B978-0-12-384858-1.00015-1.
  • Wan B, Goguet E, Ravallec M, et al. Venom atypical extracellular vesicles as interspecies vehicles of virulence factors involved in host specificity: the case of a Drosophila parasitoid wasp. Front Immunol. 2019;10:1688.
  • Colinet D, Schmitz A, Depoix D, et al. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 2007;3:e203.
  • Colinet D, Schmitz A, Cazes D, et al. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. PLoS Pathog. 2010;6:e1001206.
  • Williams MJ. Rac1 signaling in the Drosophila larval cellular immune response. J Cell Sci. 2006;119:2015–2024.
  • Fauvarque M-O, Williams MJ. Drosophila cellular immunity: a story of migration and adhesion. J Cell Sci. 2011;124:1373–1382.
  • Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009;78:857–902.
  • Kumari S, MG S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;20:256–275.
  • Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018;3:e03970.
  • Sandvig K, Kavaliauskiene S, Skotland T. Clathrin-independent endocytosis: an increasing degree of complexity. Histochem Cell Biol. 2018;150:107–118.
  • Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochem Biophys Acta Mol Cell Res. 2005;1745:273–286.
  • Mayor S, Parton RG, Donaldson JG. Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol. 2014;6:a016758.
  • Maldonado-Báez L, Williamson C, Donaldson JG. Clathrin-independent endocytosis: A cargo-centric view. Exp Cell Res. 2013;319:2759–2769.
  • Charroux B, Royet J. Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proc Natl Acad Sci USA. 2009;106:9797–9802.
  • Melcarne C, Lemaitre B, Kurant E. Phagocytosis in Drosophila: from molecules and cellular machinery to physiology. Insect Biochem Mol Biol. 2019;109:1–12.
  • Narayanan R, Ramaswami M. Endocytosis in Drosophila: progress, possibilities, prognostications. Exp Cell Res. 2001;271:28–35.
  • Guha A, Sriram V, Krishnan KS, et al. Shibire mutations reveal distinct dynamin-independent and -dependent endocytic pathways in primary cultures of Drosophila hemocytes. J Cell Sci. 2003;116:3373–3386.
  • Fischer JA, Eun SH, Doolan BT. Endocytosis, endosome trafficking, and the regulation of Drosophila development. Annu Rev Cell Dev Biol. 2006;22:181–206.
  • Rizki TM, Rizki RM. Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev Comp Immunol. 1992;16:103–110.
  • Ribeiro C, Brehélin M. Insect haemocytes: what type of cell is that? J Insect Physiol. 2006;52:417–429.
  • Dubuffet A, Colinet D, Anselme C, et al. Variation of Leptopilina boulardi success in Drosophila hosts: what is inside the black box? Adv Parasitol. 2009;70:147–188.
  • Hanratty WP, Dearolf CR. The Drosophila Tumorous lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol Gen Genet. 1993;238:33–37.
  • Luo H, Rose P, Roberts T, et al. The Hopscotch Jak kinase requires the Raf pathway to promote blood cell activation and differentiation in Drosophila. Mol Genet Genomics. 2002;267:57–63.
  • Donaldson JG, Johnson DL, Dutta D. Rab and Arf G proteins in endosomal trafficking and cell surface homeostasis. Small GTPases. 2016;7:247–251.
  • Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalizing large gulps. Immunol Cell Biol. 2011;89:836–843.
  • Bastiani M, Parton RG. Caveolae at a glance. J Cell Sci. 2010;123:3831–3836.
  • Parton RG, Collins BM. Unraveling the architecture of caveolae. Proc Nat Acad Sci USA. 2016;113:14170–14172.
  • Meister M, Tikkanen R. Endocytic trafficking of membrane-bound cargo: A flotillin point of view. Membranes (Basel). 2014;4:356–371.
  • Galbiati F, Volonté D, Goltz JS, et al. Identification, sequence and developmental expression of invertebrate flotillins from Drosophila melanogaster. Gene. 1998;210:229–237.
  • MacKrell AJ, Blumberg B, Haynes SR, et al. The lethal myospheroid gene of Drosophila encodes a membrane protein homologous to vertebrate integrin beta subunits. Proc Natl Acad Sci USA. 1988;85:2633–2637.
  • Xavier MJ, Williams MJ. The Rho-family GTPase Rac1 regulates integrin localization in Drosophila immunosurveillance cells. PLoS One. 2011;6:e19504.
  • Hijazi A, Masson W, Auge B, et al. boudin is required for septate junction organization in Drosophila and codes for a diffusible protein of the Ly6 superfamily. Development. 2009;136:2199–2209.
  • Lee PY, Wang JX, Parisini E, et al. Ly6 family proteins in neutrophil biology. J Leukoc Biol. 2013;94:585–594.
  • Tanaka K, Diekmann Y, Hazbun A, et al. Analysis of expression pattern diversification in the recently expanded insect Ly6 gene family. Mol Biol Evol. 2015;32:1730–1747.
  • Rab SH. GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–525.
  • Strand MR, Burke GR. Polydnavirus-wasp associations: evolution, genome organization, and function. Curr Opin Virol. 2013;3:587–594.
  • Gauthier J, Drezen J-M, Herniou E. The recurrent domestication of viruses: major evolutionary transitions in parasitic wasps. Parasitology. 2017;145:713–723.
  • Colinet D, Deleury E, Anselme C, et al. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem Mol Biol. 2013;43:601–611.
  • Goecks J, Mortimer NT, Mobley JA, et al. Integrative approach reveals composition of endoparasitoid wasp venoms. PLoS One. 2013;8:1–14.
  • Heavner ME, Ramroop J, Gueguen G, et al. Novel organelles with elements of bacterial and eukaryotic secretion systems weaponize parasites of Drosophila. Curr Biol. 2017;27:2869–2877.e6.
  • Qualmann B, Mellor H. Regulation of endocytic traffic by Rho GTPases. Biochem J. 2003;371:233–241.
  • Dupas S, Boscaro M. Geographic variation and evolution of immunosuppressive genes in a Drosophila parasitoid. Ecography. 1999;22:284–291.
  • Poirié M, Frey F, Hita M, et al. Drosophila resistance genes to parasitoids: chromosomal location and linkage analysis. Proc R Soc Lond B. 2000;267(1451):1417–1421.
  • Labrosse C, Stasiak K, Lesobre J, et al. A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)-Drosophila melanogaster interaction. Insect Biochem Mol Biol. 2005;35:93–103.