7,372
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Pathogenicity & virulence of Mycoplasma hyopneumoniae

ORCID Icon, , &
Pages 1600-1622 | Received 15 Jun 2020, Accepted 22 Oct 2020, Published online: 08 Dec 2020

References

  • Thacker EL, Minion CF. Mycoplasmosis. In: Jeffrey J. Zimmerman, Locke A. Karriker, Alejandro Ramirez, Ken J. Schwartz and Gregory W. Stevenson, editors. Diseases of swine. Iowa state: university press; 2010. p. 779–797.
  • Maes D, Sibila M, Kuhnert P, et al. Update on mycoplasma hyopneumoniae infections in pigs: knowledge gaps for improved disease control. Transbound Emerg Dis. 2018;65(1):110-124. DOI:https://doi.org/10.1111/tbed.12677
  • Holst S, Yeske P, Pieters M. Elimination of mycoplasma hyopneumoniae from breed-to-wean farms: a review of current protocols with emphasis on herd closure and medication. J Swine Health Prod. 2015;23(6):321–330.
  • Bai Y, Gan Y, Hua LZ, et al. Application of a sIgA-ELISA method for differentiation of Mycoplasma hyopneumoniae infected from vaccinated pigs. Vet Microbiol. 2018;223:86–92.
  • Feng ZX, Bai Y, Yao JT, et al. Use of serological and mucosal immune responses to Mycoplasma hyopneumoniae antigens P97R1, P46 and P36 in the diagnosis of infection. Vet J. 2014;202:128–133.
  • Galli V, Simionatto S, Marchioro SB, et al. Immunisation of mice with Mycoplasma hyopneumoniae antigens P37, P42, P46 and P95 delivered as recombinant subunit or DNA vaccines. Vaccine. 2012;31(1):135–140.
  • Marchioro SB, Fisch A, Gomes CK, et al. Local and systemic immune responses induced by a recombinant chimeric protein containing Mycoplasma hyopneumoniae antigens fused to the B subunit of Escherichia coli heat-labile enterotoxin LTB. Vet Microbiol. 2014;173(1–2):166–171.
  • Virginio VG, Gonchoroski T, Paes JA, et al. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia. Vaccine. 2014;32(44):5832–5838.
  • Jarocki VM, Raymond BBA, Tacchi JL, et al. Mycoplasma hyopneumoniae surface-associated proteases cleave bradykinin, substance P, neurokinin A and neuropeptide Y. Sci Rep. 2019;9:14585.
  • Jarocki VM, Santos J, Tacchi JL, et al. MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae. Open Biol. 2015;5:140175.
  • Li P, Zhang Y, Li X, et al. Mycoplasma hyopneumoniae Mhp597 is a cytotoxicity, inflammation and immunosuppression associated nuclease. Vet Microbiol. 2019;235:53–62.
  • Machado C, Pinto P, Zaha A, et al. A peroxiredoxin from Mycoplasma hyopneumoniae with a possible role in H2O2 detoxification. Microbiology. 2009;155(10):3411–3419.
  • Moitinho-Silva L, Heineck BL, Reolon LA, et al. Mycoplasma hyopneumoniae type I signal peptidase: expression and evaluation of its diagnostic potential. Vet Microbiol. 2012;154(3–4):282–291.
  • Paes JA, Virginio VG, Cancela M, et al. Pro-apoptotic effect of a Mycoplasma hyopneumoniae putative type I signal peptidase on PK(15) swine cells. Vet Microbiol. 2017b;201:170–176.
  • Tacchi JL, Raymond BB, Jarocki VM, et al. Cilium adhesin P216 (MHJ_0493) is a target of ectodomain shedding and aminopeptidase activity on the surface of Mycoplasma hyopneumoniae. J Proteome Res. 2014;13:2920–2930.
  • Pirofski LA, Casadevall A. The damage-response framework as a tool for the physician-scientist to understand the pathogenesis of infectious diseases. J Infect Dis. 2018;218:S7–S11.
  • Mare CJ, Switzer WP. New species: mycoplasma hyopneumoniae; a causative agent of virus pig pneumonia. Vet Med Small Anim Clin. 1965;60:841–846.
  • Minion F, Lefkowitz E, Madsen M, et al. The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J Bacteriol. 2004;186(21):7123–7133.
  • Vasconcelos AT, Ferreira HB, Bizarro CV, et al. Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. J Bacteriol. 2005;187:5568–5577.
  • Zielinski GC, Ross RF. Effect of growth in cell cultures and strain on virulence of mycoplasma hyopneumoniae for swine. Am J Vet Res. 1990;51:344–348.
  • Bai F, Ni B, Liu M, et al. Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation. Vet Immunol Immunopathol. 2013;155(3):155–161.
  • Ni B, Bai FF, Wei Y, et al. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma hyopneumoniae in a porcine lung epithelial cell line with the involvement of caspase 3 and the MAPK pathway. Genet Mol Res. 2015;14(3):11429–11443.
  • Ni L, Song C, Wu X, et al. RNA-seq transcriptome profiling of porcine lung from two pig breeds in response to Mycoplasma hyopneumoniae infection. PeerJ. 2019;7:e7900.
  • Trueeb BS, Braun RO, Auray G, et al. Differential innate immune responses induced by Mycoplasma hyopneumoniae and Mycoplasma hyorhinis in various types of antigen presenting cells. Vet Microbiol. 2020;240:108541.
  • Leal Zimmer FMA, Moura H, Barr JR, et al. Intracellular changes of a swine tracheal cell line infected with a Mycoplasma hyopneumoniae pathogenic strain. Microb Pathog. 2019a;137:103717.
  • Leal Zimmer FMDA, Paludo GP, Moura H, et al. Differential secretome profiling of a swine tracheal cell line infected with mycoplasmas of the swine respiratory tract. J Proteomics. 2019b;192:147–159.
  • Maes D, Segales J, Meyns T, et al. Control of Mycoplasma hyopneumoniae infections in pigs. Vet Microbiol. 2008;126(4):297–309.
  • He Y, Xu MJ, Zhou DH, et al. Seroprevalence of Mycoplasma hyopneumoniae in pigs in subtropical southern China. Trop Anim Health Prod. 2011;43(3):695–698.
  • Sosa C, Blois A, Ibáñez F, et al. Genetic diversity of mycoplasma hyopneumoniae in Mmendoza province. Rev Argent Microbiol. 2019;51:229–233.
  • Pacce VD, Oliveira NRD, Jorge S, et al. Occurrence of mycoplasma hyopneumoniae in slaughter pigs from Southern Brazil. BrazilJ Veterinary Res Animal Sci. 2019;5:6.
  • Vicente AF, Catto D, Allendorf SD, et al. Seropositivity for mycoplasma hyopneumoniae in pigs at a slaughterhouse in the central region of São Paulo. Arquivo Brasileiro De Medicina Veterinária E Zootecnia. 2013;65:5.
  • Oba P, Wieland B, Mwiine FN, et al. Status and gaps of research on respiratory disease pathogens of swine in Africa. Porcine Health Manag. 2020;6:5.
  • Bertelloni F, Mazzei M, Cilia G, et al. Serological Survey on Bacterial and Viral Pathogens in Wild Boars Hunted in Tuscany. Ecohealth. 2020;17(1):85–93.
  • Malmsten A, Magnusson U, Ruiz-Fons F, et al. A serologic survey of pathogens in wild boar (sus scrofa) in sweden. J Wildl Dis. 2018;54:229–237.
  • Calsamiglia M, Pijoan C. Colonisation state and colostral immunity to Mycoplasma hyopneumoniae of different parity sows. Vet Rec. 2000;146(18):530–532.
  • Nathues H, Doehring S, Woeste H, et al. Individual risk factors for Mycoplasma hyopneumoniae infections in suckling pigs at the age of weaning. Acta Vet Scand. 2013;55:44.
  • Fano E, Pijoan C, Dee S, et al. Effect of mycoplasma hyopneumoniae colonization at weaning on disease severity in growing pigs. Can J Vet Res. 2007;71:195–200.
  • Sibila M, Nofrarías M, López-Soria S, et al. Chronological study of Mycoplasma hyopneumoniae infection, seroconversion and associated lung lesions in vaccinated and non-vaccinated pigs. Vet Microbiol. 2007;122:97–107.
  • Meyns T, Maes D, Dewulf J, et al. Quantification of the spread of Mycoplasma hyopneumoniae in nursery pigs using transmission experiments. Prev Vet Med. 2004;66(1–4):265–275.
  • Roos LR, Fano E, Homwong N, et al. A model to investigate the optimal seeder-to-naïve ratio for successful natural Mycoplasma hyopneumoniae gilt exposure prior to entering the breeding herd. Vet Microbiol. 2016;184:51–58.
  • Villarreal I, Meyns T, Dewulf J, et al. The effect of vaccination on the transmission of Mycoplasma hyopneumoniae in pigs under field conditions. Vet J. 2011;188(1):48–52.
  • Pieters M, Pijoan C, Fano E, et al. An assessment of the duration of Mycoplasma hyopneumoniae infection in an experimentally infected population of pigs. Vet Microbiol. 2009;134(3–4):261–266.
  • Takeuti KL, de Barcellos DESN, de Lara AC, et al. Detection of Mycoplasma hyopneumoniae in naturally infected gilts over time. Vet Microbiol. 2017;203:215–220.
  • Mayor D, Zeeh F, Frey J, et al. Diversity of Mycoplasma hyopneumoniae in pig farms revealed by direct molecular typing of clinical material. Vet Res. 2007;38(3):391–398.
  • Mayor D, Jores J, Korczak BM, et al. Multilocus sequence typing (MLST) of Mycoplasma hyopneumoniae: a diverse pathogen with limited clonality. Vet Microbiol. 2008;127(1–2):63–72.
  • de Castro LA, Rodrigues Pedroso T, Kuchiishi SS, et al. Variable number of tandem aminoacid repeats in adhesion-related CDS products in Mycoplasma hyopneumoniae strains. Vet Microbiol. 2006;116:258–269.
  • Dos Santos LF, Sreevatsan S, Torremorell M, et al. Genotype distribution of Mycoplasma hyopneumoniae in swine herds from different geographical regions. Vet Microbiol. 2015;175:374–381.
  • Hwang, M.H., Damte, D., Lee, J.S., Gebru, E., Chang, Z.Q., Cheng, H., Jung, B.Y., Rhee, M.H., Park, S.C. 2011. Mycoplasma hyopneumoniae induces proinflammatory cytokine and nitric oxide production through NFκB and MAPK pathways in RAW264.7 cells. Vet Res Commun 35, 21–34.
  • Garza-Moreno L, Segalés J, Pieters M, et al. Acclimation strategies in gilts to control Mycoplasma hyopneumoniae infection. Vet Microbiol. 2018;219:23–29.
  • Betlach AM, Maes D, Garza-Moreno L, et al. Mycoplasma hyopneumoniae variability: current trends and proposed terminology for genomic classification. Transbound Emerg Dis. 2019. doi:https://doi.org/10.1111/tbed.13233
  • Vranckx K, Maes D, Sacristán REP, et al. A longitudinal study of the diversity and dynamics of Mycoplasma hyopneumoniae infections in pig herds. Vet Microbiol. 2012;156:315–321.
  • Tao Y, Shu J, Chen J, et al. A concise review of vaccines against Mycoplasma hyopneumoniae. Res Vet Sci. 2019;123:144–152.
  • Meyns T, Dewulf J, de Kruif A, et al. Comparison of transmission of Mycoplasma hyopneumoniae in vaccinated and non-vaccinated populations. Vaccine. 2006;24(49–50):7081–7086.
  • Villarreal I, Vranckx K, Calus D, et al. Effect of challenge of pigs previously immunised with inactivated vaccines containing homologous and heterologous Mycoplasma hyopneumoniae strains. BMC Vet Res. 2012;8(1):2.
  • Beffort L, Weiß C, Fiebig K, et al. Field study on the safety and efficacy of intradermal versus intramuscular vaccination against Mycoplasma hyopneumoniae. Vet Rec. 2017;181(13):348.
  • Maes D, Sibila M, Kuhnert P, et al. Update on Mycoplasma hyopneumoniae infections in pigs: knowledge gaps for improved disease control. Transbound Emerg Dis. 2018;65(Suppl 1):110–124.
  • Chae C. Porcine respiratory disease complex:iInteraction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae. Vet J. 2016;212:1–6.
  • Feng ZX, Wei YN, Li GL, et al. Development and validation of an attenuated Mycoplasma hyopneumoniae aerosol vaccine. Vet Microbiol. 2013;167:417–424.
  • Martelli P, Terreni M, Guazzetti S, et al. Antibody response to Mycoplasma hyopneumoniae infection in vaccinated pigs with or without maternal antibodies induced by sow vaccination. J Vet Med B Infect Dis Vet Public Health. 2006;53(5):229–233.
  • Pieters M, Fano E, Pijoan C, et al. An experimental model to evaluate mycoplasma hyopneumoniae transmission from asymptomatic carriers to unvaccinated and vaccinated sentinel pigs. Can J Vet Res. 2010;74:157–160.
  • de Oliveira NR, Jorge S, Gomes CK, et al. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice. Vet Microbiol. 2017;201:146–153.
  • Jorge S, de Oliveira NR, Marchioro SB, et al. The Mycoplasma hyopneumoniae recombinant heat shock protein P42 induces an immune response in pigs under field conditions. Comp Immunol Microbiol Infect Dis. 2014;37(4):229–236.
  • Tassis PD, Tsakmakidis I, Papatsiros VG, et al. A randomized controlled study on the efficacy of a novel combination vaccine against enzootic pneumonia (Mycoplasma hyopneumoniae) and porcine Circovirus type 2 (PCV2) in the presence of strong maternally derived PCV2 immunity in pigs. BMC Vet Res. 2017;13(1):91.
  • Virginio VG, Bandeira NC, Leal FM, et al. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant. Heliyon. 2017;3:e00225.
  • Drexler CS, Witvliet MH, Raes M, et al. Efficacy of combined porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae vaccination in piglets. Vet Rec. 2010;166(3):70–74.
  • Jeong J, Park C, Choi K, et al. A new single-dose bivalent vaccine of porcine circovirus type 2 and Mycoplasma hyopneumoniae elicits protective immunity and improves growth performance under field conditions. Vet Microbiol. 2016;182:178–186.
  • Park C, Jeong J, Choi K, et al. Efficacy of a new bivalent vaccine of porcine circovirus type 2 and Mycoplasma hyopneumoniae (Fostera™ PCV MH) under experimental conditions. Vaccine. 2016;34(2):270–275.
  • Roques E, Girard A, Gagnon CA, et al. Antibody responses induced in mice immunized with recombinant adenovectors expressing chimeric proteins of various porcine pathogens. Vaccine. 2013;31(24):2698–2704.
  • Duivon D, Corrégé I, Hémonic A, et al. Field evaluation of piglet vaccination with a. Porcine Health Manag. 2018;4:4.
  • Maes D, Boyen F, Haesebrouck F, et al. Antimicrobial treatment of Mycoplasma hyopneumoniae infections. Vet J. 2020;259-260:105474.
  • Vicca J, Stakenborg T, Maes D, et al. In vitro susceptibilities of Mycoplasma hyopneumoniae field isolates. Antimicrob Agents Chemother. 2004;48(11):4470–4472.
  • Felde O, Kreizinger Z, Sulyok KM, et al. Antibiotic susceptibility testing of Mycoplasma hyopneumoniae field isolates from Central Europe for fifteen antibiotics by microbroth dilution method. PLoS One. 2018;13(12):e0209030.
  • Qiu G, Rui Y, Zhang J, et al. Macrolide-resistance selection in Tibetan pigs with a high load of Mycoplasma hyopneumoniae. Microb Drug Resist. 2018;24(7):1043–1049.
  • Siqueira FM, Thompson CE, Virginio VG, et al. New insights on the biology of swine respiratory tract mycoplasmas from a comparative genome analysis. BMC Genomics. 2013;14:175.
  • Ferrarini MG, Siqueira FM, Mucha SG, et al. Insights on the virulence of swine respiratory tract mycoplasmas through genome-scale metabolic modeling. BMC Genomics. 2016;17:353.
  • Paes JA, Lorenzatto KR, de Moraes SN, et al. Secretomes of Mycoplasma hyopneumoniae and Mycoplasma flocculare reveal differences associated to pathogenesis. J Proteomics. 2017a;154:69–77.
  • Paes JA, Machado LDPN, Dos Anjos Leal FM, et al. Comparative proteomics of two Mycoplasma hyopneumoniae strains and Mycoplasma flocculare identified potential porcine enzootic pneumonia determinants. Virulence. 2018;9:1230–1246.
  • Siqueira FM, Gerber AL, Guedes RL, et al. Unravelling the transcriptome profile of the Swine respiratory tract mycoplasmas. PLoS One. 2014;9:e110327.
  • Raymond BBA, Madhkoor R, Schleicher I, et al. Extracellular Actin Is a Receptor for. Front Cell Infect Microbiol. 2018b;8:54.
  • Tacchi JL, Raymond BB, Haynes PA, et al. Post-translational processing targets functionally diverse proteins in mycoplasma hyopneumoniae. Open Biol. 2016;6(2):150210.
  • Hammerschmidt S, Rohde M, Preer KT. Extracellular matrix interactions with gram-positive pathogens. Microbiol Spectr. 2019;7(2).
  • Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017;9(4):a028241.
  • Blanchard B, Vena M, Cavalier A, et al. Electron microscopic observation of the respiratory tract of SPF piglets inoculated with Mycoplasma hyopneumoniae. Vet Microbiol. 1992;30(4):329–341.
  • DeBey MC, Ross RF. Ciliostasis and loss of cilia induced by Mycoplasma hyopneumoniae in porcine tracheal organ cultures. Infect Immun. 1994;62:5312–5318.
  • Wang H, Zhang Z, Xie X, et al. Paracellular pathway-mediated Mycoplasma hyopneumoniae Migration across Porcine Airway Epithelial Barrier under Air-Liquid Interface Conditions. Infect Immun. 2020;88(10):e00470-20.
  • Chen R, Yu Y, Feng Z, et al. Featured species-specific loops are found in the crystal structure of Mhp Eno, a Cell Surface Adhesin From Mycoplasma hyopneumoniae. Front Cell Infect Microbiol. 2019;9:209.
  • Yu Y, Liu M, Hua L, et al. Fructose-1,6-bisphosphate aldolase encoded by a core gene of Mycoplasma hyopneumoniae contributes to host cell adhesion. Vet Res. 2018a;49(1):114.
  • Reolon LA, Martello CL, Schrank IS, et al. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach. PLoS One. 2014;9(11):e112596.
  • Young TF, Thacker EL, Erickson BZ, et al. A tissue culture system to study respiratory ciliary epithelial adherence of selected swine mycoplasmas. Vet Microbiol. 2000;71(3–4):269–279.
  • Berry IJ, Jarocki VM, Tacchi JL, et al. N-terminomics identifies widespread endoproteolysis and novel methionine excision in a genome-reduced bacterial pathogen. Sci Rep. 2017;7:11063.
  • Bogema DR, Scott NE, Padula MP, et al. Sequence TTKF ↓ QE defines the site of proteolytic cleavage in Mhp683 protein, a novel glycosaminoglycan and cilium adhesin of Mycoplasma hyopneumoniae. J Biol Chem. 2011;286:41217–41229.
  • Deutscher AT, Tacchi JL, Minion FC, et al. Mycoplasma hyopneumoniae surface proteins Mhp385 and Mhp384 bind host cilia and glycosaminoglycans and are endoproteolytically processed by proteases that recognize different cleavage motifs. J Proteome Res. 2012;11(3):1924–1936.
  • Djordjevic SP, Cordwell SJ, Djordjevic MA, et al. Proteolytic processing of the Mycoplasma hyopneumoniae cilium adhesin. Infect Immun. 2004;72(5):2791–2802.
  • Machado LDPN, Paes JA, Souza Dos Santos P, et al. Evidences of differential endoproteolytic processing on the surfaces of mycoplasma hyopneumoniae and mycoplasma flocculare. Microb Pathog. 2019;140:103958.
  • Raymond BB, Jenkins C, Seymour LM, et al. Proteolytic processing of the cilium adhesin MHJ_0194 (P123J) in Mycoplasma hyopneumoniae generates a functionally diverse array of cleavage fragments that bind multiple host molecules. Cell Microbiol. 2015;17:425–444.
  • Machado LDPN, Paes JA, Souza Dos Santos P, et al. Evidences of differential endoproteolytic processing on the surfaces of Mycoplasma hyopneumoniae and Mycoplasma flocculare. Microb Pathog. 2020;140:103958.
  • Robinson MW, Buchtmann KA, Jenkins C, et al. MHJ_0125 is an M42 glutamyl aminopeptidase that moonlights as a multifunctional adhesin on the surface of Mycoplasma hyopneumoniae. Open Biol. 2013;3:130017.
  • Widjaja M, Harvey KL, Hagemann L, et al. Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci Rep. 2017;7:11227.
  • Zhang Q, Young TF, Ross RF. Glycolipid receptors for attachment of Mycoplasma hyopneumoniae to porcine respiratory ciliated cells. Infect Immun. 1994;62:4367–4373.
  • Deutscher AT, Jenkins C, Minion FC, et al. Repeat regions R1 and R2 in the P97 paralogue Mhp271 of Mycoplasma hyopneumoniae bind heparin, fibronectin and porcine cilia. Mol Microbiol. 2010;78(2):444–458.
  • Seymour LM, Falconer L, Deutscher AT, et al. Mhp107 is a member of the multifunctional adhesin family of Mycoplasma hyopneumoniae. J Biol Chem. 2011;286(12):10097–10104.
  • Seymour LM, Jenkins C, Deutscher AT, et al. Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface. Cell Microbiol. 2012;14:81–94.
  • Burnett TA, Dinkla K, Rohde M, et al. P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae: defined domains of P159 bind heparin and promote adherence to eukaryote cells. Mol Microbiol. 2006;60(3):669–686.
  • Wilton J, Jenkins C, Cordwell SJ, et al. Mhp493 (P216) is a proteolytically processed, cilium and heparin binding protein of Mycoplasma hyopneumoniae. Mol Microbiol. 2009;71(3):566–582.
  • Grimmer J, Dumke R. Organization of multi-binding to host proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Mycoplasma pneumoniae. Microbiol Res. 2019;218:22–31.
  • Gründel A, Jacobs E, Dumke R. Interactions of surface-displayed glycolytic enzymes of Mycoplasma pneumoniae with components of the human extracellular matrix. Int J Med Microbiol. 2016;306(8):675–685.
  • Hagemann L, Gründel A, Jacobs E, et al. The surface-displayed chaperones GroEL and DnaK of mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix. Pathog Dis. 2017;75(3).
  • Huang J, Zhu H, Wang J, et al. Fructose-1,6-bisphosphate aldolase is involved in Mycoplasma bovis colonization as a fibronectin-binding adhesin. Res Vet Sci. 2019;124:70–78.
  • Qi J, Zhang F, Wang Y, et al. Characterization of Mycoplasma gallisepticum pyruvate dehydrogenase alpha and beta subunits and their roles in cytoadherence. PLoS One. 2018;13(12):e0208745.
  • Raymond BBA, Turnbull L, Jenkins C, et al. Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells. Sci Rep. 2018c;8(1):17697.
  • Marois C, Le Carrou J, Kobisch M, et al. Isolation of Mycoplasma hyopneumoniae from different sampling sites in experimentally infected and contact SPF piglets. Vet Microbiol. 2007;120(1–2):96–104.
  • Seymour LM, Deutscher AT, Jenkins C, et al. A processed multidomain Mycoplasma hyopneumoniae adhesin binds fibronectin, plasminogen, and swine respiratory cilia. J Biol Chem. 2010;285(44):33971–33978.
  • Widjaja M, Berry IJ, Jarocki VM, et al. Cell surface processing of the P1 adhesin of mycoplasma pneumoniae identifies novel domains that bind host molecules. Sci Rep. 2020;10:6384.
  • Bürki S, Frey J, Pilo P. Virulence, persistence and dissemination of Mycoplasma bovis. Vet Microbiol. 2015;179(1–2):15–22.
  • Chen H, Yu S, Hu M, et al. Identification of biofilm formation by Mycoplasma gallisepticum. Vet Microbiol. 2012;161(1–2):96–103.
  • Simmons WL, Daubenspeck JM, Osborne JD, et al. Type 1 and type 2 strains of Mycoplasma pneumoniae form different biofilms. Microbiology. 2013;159(Pt_4):737–747.
  • Raymond BBA, Jenkins C, Turnbull L, et al. Extracellular DNA release from the genome-reduced pathogen Mycoplasma hyopneumoniae is essential for biofilm formation on abiotic surfaces. Sci Rep. 2018a;8:10373.
  • Tassew DD, Mechesso AF, Park NH, et al. Biofilm formation and determination of minimum biofilm eradication concentration of antibiotics in Mycoplasma hyopneumoniae. J Vet Med Sci. 2017;79:1716–1720.
  • Dallo SF, Baseman JB. Intracellular DNA replication and long-term survival of pathogenic mycoplasmas. Microb Pathog. 2000;29(5):301–309.
  • Yavlovich A, Tarshis M, Rottem S. Internalization and intracellular survival of Mycoplasma pneumoniae by non-phagocytic cells. FEMS Microbiol Lett. 2004;233(2):241–246.
  • Raymond BB, Djordjevic S. Exploitation of plasmin(ogen) by bacterial pathogens of veterinary significance. Vet Microbiol. 2015;178:1–13.
  • Woolley LK, Fell SA, Djordjevic SP, et al. Plasmin activity in the porcine airways is enhanced during experimental infection with Mycoplasma hyopneumoniae, is positively correlated with proinflammatory cytokine levels and is ameliorated by vaccination. Vet Microbiol. 2013;164(1–2):60–66.
  • Bhattacharya S, Ploplis VA, Castellino FJ. Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol. 2012;2012:482096.
  • Sinha B, François PP, Nüsse O, et al. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol. 1999;1:101–117.
  • Friis NF. Mycoplasm suipneumoniae and mycoplasma flocculare in comparative pathogenicity studies. Acta Vet Scand. 1974;15:507–518.
  • Le Carrou J, Laurentie M, Kobisch M, et al. Persistence of Mycoplasma hyopneumoniae in experimentally infected pigs after marbofloxacin treatment and detection of mutations in the parC gene. Antimicrob Agents Chemother. 2006;50(6):1959–1966.
  • Deeney AS, Maglennon GA, Chapat L, et al. Mycoplasma hyopneumoniae evades phagocytic uptake by porcine alveolar macrophages in vitro. Vet Res. 2019;50(1):51.
  • Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiol Spectr. 2016;4(1).
  • Smets D, Loos MS, Karamanou S, et al. Protein transport across the bacterial plasma membrane by the sec pathway. Protein J. 2019;38(3):262–273.
  • Chernov VM, Mouzykantov AA, Baranova NB, et al. Extracellular membrane vesicles secreted by mycoplasma Acholeplasma laidlawii PG8 are enriched in virulence proteins. J Proteomics. 2014;110C:117–128.
  • Gaurivaud P, Ganter S, Villard A, et al. Mycoplasmas are no exception to extracellular vesicles release: revisiting old concepts. PLoS One. 2018;13(11):e0208160.
  • Rodríguez F, Batista M, Hernández JN, et al. Relationship between expression of interleukin-5 and Interleukin-13 by epithelial cells and bronchiolar changes in pigs infected with mycoplasma hyopneumoniae. J Comp Pathol. 2016;154(2–3):165–168.
  • Fourour S, Marois-Créhan C, Martelet L, et al. Intra-species and inter-species differences in cytokine production by porcine antigen-presenting cells stimulated by Mycoplasma hyopneumoniae, M. hyorhinis, and M. flocculare. Pathogens. 2019;8(1):34.
  • Woolley LK, Fell S, Gonsalves JR, et al. Evaluation of clinical, histological and immunological changes and qPCR detection of Mycoplasma hyopneumoniae in tissues during the early stages of mycoplasmal pneumonia in pigs after experimental challenge with two field isolates. Vet Microbiol. 2012;161(1–2):186–195.
  • Shen Y, Hu W, Wei Y, et al. Effects of Mycoplasma hyopneumoniae on porcine nasal cavity dendritic cells. Vet Microbiol. 2017;198:1–8.
  • Leal FMDA, Virginio VG, Martello CL, et al. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice. Vet Microbiol. 2016;50–57. DOI:https://doi.org/10.1016/j.vetmic.2016.05.008
  • Garcia-Morante B, Segalés J, Fraile L, et al. Potential use of local and systemic humoral immune response parameters to forecast Mycoplasma hyopneumoniae associated lung lesions. PLoS One. 2017;12(4):e0175034.
  • Muneta Y, Minagawa Y, Shimoji Y, et al. Immune response of gnotobiotic piglets against Mycoplasma hyopneumoniae. J Vet Med Sci. 2008;70(10):1065–1070.
  • Thanawongnuwech R, Thacker EL. Interleukin-10, interleukin-12, and interferon-gamma levels in the respiratory tract following mycoplasma hyopneumoniae and PRRSV infection in pigs. Viral Immunol. 2003;16:357–367.
  • Bai F, Ni B, Liu M, et al. Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce inflammation and apoptosis in porcine peripheral blood mononuclear cells in vitro. Vet Microbiol. 2015;175(1):58–67.
  • Liu W, Zhou D, Yuan F, et al. Surface proteins mhp390 (P68) contributes to cilium adherence and mediates inflammation and apoptosis in Mycoplasma hyopneumoniae. Microb Pathog. 2019;126:92–100.
  • Chandrasekar BS, Yadav S, Victor ES, et al. Interferon-gamma and nitric oxide synthase 2 mediate the aggregation of resident adherent peritoneal exudate cells: implications for the host response to pathogens. PLoS One. 2015;10(6):e0128301.
  • Thom SR, Bhopale VM, Milovanova TN, et al. Nitric-oxide synthase-2 linkage to focal adhesion kinase in neutrophils influences enzyme activity and β2 integrin function. J Biol Chem. 2013;288:4810–4818.
  • Yadav S, Pathak S, Sarikhani M, et al. Nitric oxide synthase 2 enhances the survival of mice during Salmonella Typhimurium infection-induced sepsis by increasing reactive oxygen species, inflammatory cytokines and recruitment of neutrophils to the peritoneal cavity. Free Radic Biol Med. 2018;116:73–87.
  • Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003;57(1):395–418.
  • El-Benna J, Hurtado-Nedelec M, Marzaioli V, et al. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev. 2016;273:180–193.
  • Rose SJ, Bermudez LE, Flynn JL. Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection. Infect Immun. 2014;82(1):405–412.
  • Poderoso JJ, Helfenberger K, Poderoso C. The effect of nitric oxide on mitochondrial respiration. Nitric Oxide. 2019;88:61–72.
  • Choi SY, Lim JW, Shimizu T, et al. Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae. Inflamm Res. 2012;61(5):493–501.
  • Dusanic D, Bencina D, Oven I, et al. Mycoplasma synoviae induces upregulation of apoptotic genes, secretion of nitric oxide and appearance of an apoptotic phenotype in infected chicken chondrocytes. Vet Res. 2012;43(1):7.
  • Obara H, Harasawa R. Nitric oxide causes anoikis through attenuation of E-cadherin and activation of caspase-3 in human gastric carcinoma AZ-521 cells infected with Mycoplasma hyorhinis. J Vet Med Sci. 2010;72(7):869–874.
  • Citti C, Nouvel LX, Baranowski E. Phase and antigenic variation in mycoplasmas. Future Microbiol. 2010;5:1073–1085.
  • Moitinho-Silva L, Kondo MY, Oliveira LC, et al. Mycoplasma hyopneumoniae in vitro peptidase activities: identification and cleavage of kallikrein-kinin system-like substrates. Vet Microbiol. 2013;163:264–273.
  • Polosa R, Hasani A, Pavia D, et al. Acute effect of inhaled bradykinin on tracheobronchial clearance in normal humans. Thorax. 1992;47:952–956.
  • Onaga T. Tachykinin: recent developments and novel roles in health and disease. Biomol Concepts. 2014;5(3):225–243.
  • Prod’homme T, Weber MS, Steinman L, et al. A neuropeptide in immune-mediated inflammation, Y? Trends Immunol. 2006;27(4):164–167.
  • Neto JC, Strait EL, Raymond M, et al. Antibody responses of swine following infection with Mycoplasma hyopneumoniae, M. hyorhinis, M. hyosynoviae and M. flocculare. Vet Microbiol. 2014. DOI:https://doi.org/10.1016/j.vetmic.2014.08.008
  • Yu Y, Wang J, Han R, et al. Evades complement activation by binding to factor H via elongation factor thermo unstable (EF-Tu). Virulence. 2020;11:1059–1074.
  • Weiler JM, Daha MR, Austen KF, et al. Control of the amplification convertase of complement by the plasma protein beta1H. Proc Natl Acad Sci U S A. 1976;73:3268–3272.
  • Henthorn CR, Chris Minion F, Sahin O. Utilization of macrophage extracellular trap nucleotides by Mycoplasma hyopneumoniae. Microbiology. 2018;164(11):1394–1404.
  • Sirand-Pugnet P, Citti C, Barré A, et al. Evolution of mollicutes: down a bumpy road with twists and turns. Res Microbiol. 2007;158(10):754–766.
  • Hames C, Halbedel S, Hoppert M, et al. Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae. J Bacteriol. 2009;191:747–753.
  • Vilei EM, Frey J. Genetic and biochemical characterization of glycerol uptake in mycoplasma mycoides subsp. mycoides SC: its impact on H(2)O(2) production and virulence. Clin Diagn Lab Immunol. 2001;8:85–92.
  • Ferrarini MG, Mucha SG, Parrot D, et al. Hydrogen peroxide production and myo-inositol metabolism as important traits for virulence of Mycoplasma hyopneumoniae. Mol Microbiol. 2018. DOI:https://doi.org/10.1111/mmi.13957
  • Mucha SG, Ferrarini MG, Moraga C, et al. Mycoplasma hyopneumoniae J elicits an antioxidant response and decreases the expression of ciliary genes in infected swine epithelial cells. Sci Rep. 2020;10:13707.
  • Pan Q, Wang X, Liu T, et al. Mycoplasma hyopneumoniae inhibits porcine beta-defensin 2 production by blocking the unfolded protein response to facilitate epithelial adhesion and infection. Infect Immun. 2020;88(7). DOI:https://doi.org/10.1128/IAI.00164-20
  • Gonchoroski T, Virginio VG, Thompson CE, et al. Evolution and function of the Mycoplasma hyopneumoniae peroxiredoxin, a 2-Cys-like enzyme with a single Cys residue. Mol Genet Genomics. 2017;292(2):297–305.
  • Madsen ML, Nettleton D, Thacker EL, et al. Transcriptional profiling of Mycoplasma hyopneumoniae during heat shock using microarrays. Infect Immun. 2006;74(1):160–166.
  • Paes JA, Leal Zimmer FMA, Moura H, et al. Differential responses to stress of two Mycoplasma hyopneumoniae strains. J Proteomics. 2019;199:67–76.
  • Schafer ER, Oneal MJ, Madsen ML, et al. Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to hydrogen peroxide. Microbiology. 2007;153(11):3785–3790.
  • Ferreira HB, Castro LA. A preliminary survey of M. hyopneumoniae virulence factors based on comparative genomic analysis. São Paulo Gene Mol Microbiol. 2007;30(1):245–255.
  • Bogema DR, Deutscher AT, Woolley LK, et al. Characterization of cleavage events in the multifunctional cilium adhesin Mhp684 (P146) reveals a mechanism by which Mycoplasma hyopneumoniae regulates surface topography. MBio. 2012;3(2): e00282-11.
  • Yu Y, Wang H, Wang J, et al. Elongation factor thermo unstable (EF-Tu) moonlights as an adhesin on the surface of mycoplasma hyopneumoniae by binding to fibronectin. Front Microbiol. 2018b;9:974.
  • Deng X, Zhu Y, Dai P, et al. Three polypeptides screened from phage display random peptide library may be the receptor polypeptide of Mycoplasma genitalium adhesion protein. Microb Pathog. 2018;120:140–146.
  • Raymond BB, Tacchi JL, Jarocki VM, et al. P159 from Mycoplasma hyopneumoniae binds porcine cilia and heparin and is cleaved in a manner akin to ectodomain shedding. J Proteome Res. 2013;12:5891–5903.
  • Minion FC, Jarvill-Taylor K. Membrane-associated hemolysin activities in mycoplasmas. FEMS Microbiol Lett. 1994;116(1):101–106.
  • Khil PP, Camerini-Otero RD. Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol. 2002;44(1):89–105.