17,839
Views
45
CrossRef citations to date
0
Altmetric
Review Article

Pathogenicity and virulence of Clostridium perfringens

, , , , &
Pages 723-753 | Received 01 Sep 2020, Accepted 29 Jan 2021, Published online: 12 Apr 2021

References

  • McClane BA, Robertson SL, Li J. Clostridium perfringens. In: Doyle MP, Buchanan RL, editors. In: food Microbiology: fundamentals and Frontiers. 4th ed. ASM press: Washington D.C.; 2013. p. 465–489.
  • Melville SB, Craig L. Type IV pili in Gram-positive bacteria. Microbiol Mol Biol Rev. 2013;77(3):323–341.
  • Rood JI, Adams V, Lacey J, et al. Expansion of the Clostridium perfringens toxinotyping scheme. Anaerobe. 2018;53:5–10.
  • Oda M, Terao Y, Sakurai J, et al. Membrane-binding mechanism of Clostridium perfringens alpha-toxin. Toxins (Basel). 2015;7(12):5268–5275.
  • Popoff MR, Bouvet P. Clostridial toxins. Future Microbiol. 2009;4(8):1021–1064.
  • Navarro MA, McClane BA, Uzal FA. Mechanisms of action and cell death associated with Clostridium perfringens toxins. Toxins (Basel). 2018;10(5):212.
  • Sakurai J, Duncan CL. Some properties of the beta toxin produced by Clostridium perfringens type C. Infect Immun. 1978;21(2):678–680.
  • Hunter SEC, Brown JE, Oynston PCF, et al. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus. Infect Immun. 1993;61(9):3958–3965.
  • Nagahama M, Seike S, Shirai H, et al. Role of P2X7 receptor in Clostridium perfringens beta-toxin-mediated cellular injury. Biochim Biophys Acta. 2015;1850(11):2159–2167.
  • Bruggisser J, Tarek B, Wyder M, et al. CD31 (PECAM-1) serves as the endothelial cell-specific receptor of Clostridium perfringens beta toxin. Cell Host Microbe. 2020;28(1):69–78.
  • Nagahama M, Hayashi S, Morimitsu S, et al. Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells. J Biol Chem. 2003;278(38):36934–36941.
  • Nagahama M, Ochi S, Oda M, et al. Recent insights into Clostridium perfringens beta toxin. Toxins (Basel). 2015;7(2):396–406.
  • Gurtner C, Popescu F, Wyder M, et al. Rapid cytopathic effects of Clostridium perfringens beta toxin on porcine endothelial cells. Infect Immun. 2010;78(7):2966–2973.
  • Nagahama M, Shibutani M, Seike S, et al. The p38 MAPK and JNK pathways protect host cells against Clostridium perfringens beta toxin. Infect Immun. 2013;81(10):3703–3708.
  • Autheman D, Wyder M, Popoff MR, et al. Clostridium perfringens beta toxin induces necrostatin-inhibitable, calpain-dependent necrosis in primary porcin endothelial cells. PLoS One. 2013;8(5):e64644.
  • Humphries F, Yang S, Wang B, et al. RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ. 2015;22(2):225–236.
  • Seike S, Takehara M, Kobayashi K, et al. Role of pannexin 1 in Clostridium perfringens beta toxin caused cell death. Biochim Biophys Acta. 2016;1858(12):3150–3156.
  • Uzal FA, Saputo J, Sayeed S, et al. Development and application of new mouse models to study the pathogenesis of Clostridium perfringens type C enterotoxemias. Infect Immun. 2009;77(12):5291–5299.
  • Theoret JR, Uzal FA, McClane BA. Identification and characterization of Clostridium perfringens beta toxin variants with differing trypsin sensitivity and in vitro cytotoxicity activity. Infect Immun. 2015;83(4):1477–1486.
  • Briggs DC, Naylor CE, Smedley JG, et al. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. J Mol Biol. 2011;413(1):138–149.
  • Kitadokoro K, Nishimura K, Kamitani S, et al. Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins. J Biol Chem. 2011;286(22):19549–19555. .
  • Freedman JC, Shrestha A, McClane BA. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins (Basel). 2016;8(3):73.
  • Katahira J, Inoue N, Horiguchi Y, et al. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol. 1997;136(6):1239–1247.
  • Shrestha A, McClane BA. Human claudin-8 and −14 are receptors capable of conveying the cytotoxic effects of Clostridium perfringens enterotoxin. mBio. 2013;4(1):e00594–12.
  • Shrestha A, Uzal FA, McClane BA. The interaction of Clostridium perfringens enterotoxin with receptor claudins. Anaerobe. 2016;41:18–26.
  • Saitoh SH, Tani K, Nishikawa K, et al. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science. 2015;347(6223):775–778.
  • Robertson S, Smedley JG, McClane BA. Identification of a claudin-4 residue important for mediating the host cell binding and action of Clostridium perfringens enterotoxin. Infect Immun. 2010;78(1):505–517.
  • Robertson SL, Smedley JG, Singh U, et al. Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants. Cell Microbiol. 2007;9(11):2734–2755.
  • Mehdizadeh Gohari I, Li J, Navarro MA, et al. Effects of claudin-1 on the action of Clostridium perfringens enterotoxin in Caco-2 cells. Toxins (Basel). 2019;11(10):582.
  • Chen J, Theoret JR, Shrestha A, et al. Cysteine scanning mutagenesis supports the importance of Clostridium perfringens enterotoxin amino acids 80-106 for membrane insertion and pore formation. Infect Immun. 2012;80(12):4078–4088.
  • Benz R, Popoff MR. Clostridium perfringens enterotoxin. The toxin forms highly cation-selective channels in lipid bilayers. Toxins (Basel). 2018;10(9):341.
  • Chakarbarti G, Zhou X, McClane BA. Death pathways activated in CaCo-2 cells by Clostridium perfringens enterotoxin. Infect Immun. 2003;71(8):4260–4270.
  • Chakarbarti G, McClane BA. The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cell Microbiol. 2005;7(1):129–146.
  • Shrestha A, Mehdizadeh Gohari I, McClane BA. RIP1, RIP3, and MLKL contribute to cell death caused by Clostridium perfringens enterotoxin. mBio. 2019;10(6):e022985–022919.
  • Caserta JA, Robertson SL, Saputo J, et al. Development and application of a mouse intestinal loop model to study the in vivo action of Clostridium perfringens enterotoxin. Infect Immun. 2011;79(8):3020–3027.
  • Popoff MR. Clostridial pore-forming toxins: powerful virulence factors. Anaerobe. 2014;30:220–238.
  • Cole AR, Gibert M, Popoff MR, et al. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat Struct Mol Biol. 2004;11(8):797–798.
  • Rumah K, Ma Y, Linden J, et al. The myelin and lymphocyte protein MAL is required for binding and activity of Clostridium perfringens ε-Toxin. PLoS Pathog. 2015;11(5):e1004896.
  • Robertson SL, Li J, Uzal FA, et al. Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin. PLoS One. 2011;6(7):e22053.
  • Miyata S, Matsushita O, Minami J, et al. Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens epsilon-toxin in the synaptosomal membrane. J Biol Chem. 2001;276(17):13778–13783.
  • Savva CG, Clark AR, Nalor CE, et al. The pore structure of Clostridium perfringens epsilon toxin. Nat Commun. 2019;10(1):2641.
  • Minami J, Katayama S, Matsushita O, et al. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiol Immun. 1997;41(7):527–535. .
  • Freedman JC, Li J, Uzal FA, et al. Proteolytic processing and activation of Clostridium perfringens epsilon toxin by caprine small intestinal contents. mBio. 2014;5(5):e01994–01914.
  • Harkness JM, Li J, McClane BA. Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly. Anaerobe. 2012;18(5):546–552.
  • Sakurai J, Nagahama M, Oda M, et al. Clostridium perfringens iota-toxin: structure and function. Toxins (Basel). 2009;1(2):208–228.
  • Gibert M, Petit L, Raffestin S, et al. Clostridium perfringens iota-toxin requires activation of both binding and enzymatic components for cytopathic activity. Infect Immun. 2000;68(7):3848–3853.
  • Schmidt G, Papatheodorou P, Aktories K. Novel receptors for bacterial protein toxins. Curr Opin Microbiol. 2015;23:55–61.
  • Nagahama M, Takekara M, Kobayashi K. Interaction of Clostridium perfringens iota toxin and lipolysis-stimulated lipoprotein receptor (LSR). Toxins (Basel). 2018;10(10):405.
  • Wigelsworth DJ, Ruthel G, Schnell L, et al. CD44 promotes intoxication by the clostridial iota-family toxins. PLoS One. 2012;7(12):e51356.
  • Richard JF, Mainguy G, Gibert M, et al. Transcytosis of iota-toxin across polarized CaCo-2 cells. Mol Microbiol. 2002;43(4):907–917.
  • Nagahama M, Nagayasu K, Kobayashi K, et al. Binding component of Clostridium perfringens iota toxin induces endocytosis in Vero cells. Infect Immun. 2002;70(4):1909–2002.
  • Nagahama M, Umezaki M, Tashiro R, et al. Intracellular trafficking of Clostridium perfringens iota-toxin b. Infect Immun. 2012;80(10):3410–3416.
  • Sakurai J, Nagahama M, Hisatsune J, et al. Clostridium perfringens ι-toxin, ADP-ribosyltransferase: structure and mechanism of action. Advan Enzym Regul. 2003;43(1):361–377. .
  • Gibert M, Marvaud JC, Pereira Y, et al. Differential requirement for the translocation of clostridial binary toxins: iota toxin requires a membrane potential gradient. FEBS Lett. 2007;581(7):1287–1296.
  • Tsuge H, Nagahama M, Oda M, et al. Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens toxin. Proc Natl Acad Sci USA. 2008;105(21):7399–7404.
  • Tsuge H, Nagahama M, Nishimura H, et al. Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota toxin. J Mol Biol. 2003;325(3):471–483.
  • Hilger H, Pust S, Von Figura G, et al. The long-lived nature of Clostridium perfringens iota toxin in mammalian cells induces delayed apoptosis. Infect Immun. 2009;77(12):5593–5601.
  • Keyburn AL, Boyce JD, Vaz P, et al. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. 2008;4(2):e26.
  • Keyburn AL, Bannam TL, Moore RJ, et al. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins (Basel). 2010;2(7):1913–1927.
  • Yan X, Porter CJ, Hardy SP, et al. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens. mBio. 2013;4(1):e00019–13.
  • Savva CG, Fernandes Da Costa SP, Bokori-Brown M, et al. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. J Biol Chem. 2012;288(5):3512–3522.
  • Yonogi S, Matsuda S, Kawai T, et al. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect Immun. 2014;82(6):2390–2399. .
  • Irikura D, Monma C, Suzuki Y, et al. Identification and characterization of a new enterotoxin produced by Clostridium perfringens isolated from food poisoning outbreaks. PLoS One. 2015;10(11):e0138183.
  • Gibert M, Jolivet-Reynaud C, Popoff MR. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene. 1997;203(1):65–73.
  • Uzal FA, Vidal JE, McClane BA, et al. Toxins involved in mammalian veterinary diseases. Open Toxicol J. 2010;2:24–42.
  • Jost BH, Billington SJ, Trinh HT, et al. Atypical cpb2 genes encoding beta2-toxin in Clostridium perfringens isolates of nonporcine origin. Infect Immun. 2005;73(1):652–656.
  • Kircanski J, Parreira VR, Whiteside S, et al. The majority of atypical cpb2 genes in Clostridium perfringens isolates of different domestic animal origin are expressed. Vet Microbiol. 2012;159(4):371–374.
  • Manich M, Knapp O, Gibert M, et al. Clostridium perfringens delta toxin is sequence related to beta toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences. PLoS One. 2008;3(11):e3764.
  • Alouf JE, Jolivet-Reynaud C. Purification and characterization of Clostridium perfringens delta toxin. Infect Immun. 1981;31(2):536–546.
  • Jolivet-Reynaud C, Alouf JE. Binding of Clostridium perfringens 125I-labeled delta-toxin to erythrocytes. J Biol Chem. 1983;258(3):1871–1877.
  • Seike S, Takehara M, Kobayashi K, et al. Clostridium perfringens delta toxin damages the mouse small intestine. Toxins (Basel). 2019;11(4):232.
  • Mehdizadeh Gohari I, Parreira VR, Nowell VJ, et al. A novel pore-forming toxin in type A Clostridium perfringens is associated with both fatal canine hemorrhagic gastroenteritis and fatal foal necrotizing enterocolitis. PLoS One. 2015;10(4):e0122684.
  • Mehdizadeh Gohari I, Brefo-Mensah EK, Palmer M, et al. Sialic acid facilitates binding and cytotoxic activity of the pore-forming Clostridium perfringens NetF toxin to host cells. PLoS One. 2018;13(11):e0206815.
  • Fussle R, Bhakdi S, Sziegoleit A, et al. On the mechanism of membrane damage by Staphylococcus aureus alpha toxin. J Cell Biol. 1981;91(1):83–94.
  • Uzal FA, Freedman JC, Shrestha A, et al. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol. 2014;9(3):361–377.
  • Tweten RK. Nucleotide sequence of the gene for perfringolysin O from Clostridium perfringens: significant homology with the genes for streptolysin and pneumolysin. Infect Immun. 1988;56(12):3235–3240.
  • Soltani CE, Hotze EM, Johnson AE, et al. Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci USA. 2007;104(51):20226e20231.
  • Rossjohn J, Feil SC, McKinstry WJ, et al. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell. 1997;89(5):685–692.
  • Harris RW, Sims PJ, Tweten RK. Evidence that Clostridium perfringens theta-toxin induces colloid-osmotic lysis of erythrocyte. Infect Immun. 1991;59(7):2499e2501.
  • Ribet D, Hamon M, Gouin E, et al. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature. 2010;464(7292):1192–11955.
  • Amimoto K, Noro T, Oishi E, et al. A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiol. 2007;153(4):1198–1206.
  • Guttenberg G, Hornei S, Jank T, et al. Molecular characteristics of Clostridium perfringens TpeL toxin and consequences of mono-O-GlcNAcylation of Ras in living cells. J Biol Chem. 2012;287(30):24929–24940.
  • Belyi Y, Aktories K. Bacterial toxin and effector glycosyltransferases. Biochim Biophys Acta. 2010;1800(2):134–143.
  • Pauillac S, D’allayer J, Lenormand P, et al. Characterization of the enzymatic activity of Clostridium perfringens TpeL. Toxicon. 2013;75:136–143.
  • Schorch B, Song S, Van Diemen FR, et al. LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. Proc Natl Acad Sci USA. 2014;111(17):6431–6436.
  • Paredes-Sabja D, Sarker N, Sarker MR. Clostridium perfringens tpeL is expressed during sporulation. Microb Pathog. 2011;51(5):384–388.
  • Chen J, McClane BA. Characterization of Clostridium perfringens TpeL toxin gene carriage, production, cytotoxic contributions, and trypsin sensitivity. Infect Immun. 2015;83(6):2369–2381.
  • Carter GP, Larcombe S, Li L, et al. Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms. Int J Med Microbio. 2014;304(8):1147–1159. .
  • Chalmers G, Bruce HL, Hunter DB, et al. Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations. J Clin Microbiol. 2008;46(12):3957–3964.
  • Coursodon CF, Glock RD, Moore KL, et al. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe. 2012;18(1):117–121.
  • Cheung JK, Adams V, D’Souza D, et al. The EngCP endo alpha-N-acetylgalactosaminidase is a virulence factor involved in Clostridium perfringens gas gangrene infections. Int J Med Microbiol. 2020;310(2):151398.
  • Chakravorty A, Awad MM, Hiscox TJ, et al. The cysteine protease alpha-clostripain is not essential for the pathogenesis of Clostridium perfringens-mediated myonecrosis. PLoS One. 2011;6(7):e22762.
  • Wade B, Keyburn AL, Haring V, et al. Two putative zinc metalloproteases contribute to the virulence of Clostridium perfringens strains that cause avian necrotic enteritis. J Vet Diagn Invest. 2020;32(2):259–267.
  • Li J, Uzal FA, McClane BA. Clostridium perfringens Sialidases: potential contributors to intestinal pathogenesis and therapeutic targets. Toxins (Basel). 2016;8(341):341.
  • Wang YH. Sialidases from Clostridium perfringens and their inhibitors. Front Cell Infect Microbiol. 2020;9:462.
  • Li J, McClane BA. The sialidases of Clostridium perfringens type D strain CN3718 differ in their properties and sensitivities to inhibitors. Appl Environ Microbiol. 2014;80(5):1701–1709.
  • Li J, Sayeed S, Robertson S, et al. Sialidases affect the host cell adherence and epsilon toxin-induced cytotoxicity of Clostridium perfringens type D strain CN3718. PLoS Pathog. 2011;7(12):e1002429.
  • Chiarezza M, Lyras D, Pidot SJ, et al. The NanI and NanJ sialidases of Clostridium perfringens are not essential for virulence. Infect Immun. 2009;77(10):4421–4428. .
  • Li J, McClane BA. Contributions of NanI sialidase to Caco-2 cell adherence by Clostridium perfringens type A and C strains causing human intestinal disease. Infect Immun. 2014;82(11):4620–4630.
  • Sarker MR, Shivers RP, Sparks SG, et al. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid versus chromosomal enterotoxin genes. Appl Environ Microbiol. 2000;66(8):3234–3240.
  • Ma M, Li J, McClane BA. Genotypic and phenotypic characterization of Clostridium perfringens isolates from Darmbrand cases in post-World War II Germany. Infect Immun. 2012;80(12):4354–4363.
  • Li J, McClane BA. Comparative effects of osmotic, sodium nitrite-induced, and pH-induced stress on growth and survival of Clostridium perfringens type A isolates carrying chromosomal or plasmid-borne enterotoxin genes. Appl Environ Microbiol. 2006;72(12):7620–7625.
  • Li J, McClane BA. Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene. Appl Environ Microbiol. 2006;72(7):4561–4568.
  • Li J, McClane BA. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates. PLoS Pathog. 2008;4(5):e1000056.
  • Raju D, Setlow P, Sarker MR. Antisense-RNA-mediated decreased synthesis of small, acid-soluble spore proteins leads to decreased resistance of Clostridium perfringens spores to moist heat and UV radiation. Appl Environ Microbiol. 2007;73(7):2048–2053.
  • Li J, Paredes-Sabja D, Sarker MR, et al. Further characterization of Clostridium perfringens small acid soluble protein-4 (Ssp4) properties and expression. PLoS One. 2009;4(7):e6249.
  • Novak JS, Juneja VK, McClane BA. An ultrastructural comparison of spores from various strains of Clostridium perfringens and correlations with heat resistance parameters. Int J Food Microbiol. 2003;86(3):239–247.
  • Orsburn B, Melville SB, Popham DL. Factors contributing to heat resistance of Clostridium perfringens endospores. Appl Environ Microb. 2008;74(11):3328–3335.
  • Shimizu T, Ohtani K, Hirakawa H, et al. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA. 2002;99(2):996–1001.
  • Kiu R, Caim S, Alexander S, et al. Probing genomic aspects of the multi-host pathogen Clostridium perfringens reveals significant pangenome diversity, and a diverse array of virulence factors. Front Microbiol. 2017;8:2485.
  • Mehdizadeh Gohari I, Prescott JF. Commentary: probing genomic aspects of the multi-host pathogen Clostridium perfringens reveals significant pangenome diversity, and a diverse array of virulence factors. Front Microbiol. 2018;9(1856). DOI:10.3389/fmicb.2018.01856.
  • Myers GS, Rasko DA, Cheung JK, et al. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res. 2006;16(8):1031–1040. .
  • Nowell VJ, Kropinski AM, Songer JG, et al. Genome sequencing and analysis of a type A Clostridium perfringens isolate from a case of bovine clostridial abomasitis. PLoS One. 2012;7(3):e32271.
  • Hassan KA, Elbourne LD, Tetu SG, et al. Genomic analyses of Clostridium perfringens isolates from five toxinotypes. Res Microbiol. 2015;166(4):255–263.
  • Mehdizadeh Gohari I, Kropinski AM, Weese SJ, et al. Plasmid characterization and chromosome analysis of two netF+ Clostridium perfringens isolates associated with foal and canine necrotizing enteritis. PLoS One. 2016;11(2):e0148344.
  • Lacey JA, Johanesen PA, Lyras D, et al. In silico identification of novel toxin homologs and associated mobile genetic elements in Clostridium perfringens. Pathog. 2019;8(1):16.
  • Sebald M, Costilow RN. Minimal growth requirements for Clostridium perfringens and isolation of auxotrophic mutants. Appl Microbiol. 1975;29(1):1–6.
  • Lepp D, Gong J, Songer JG, et al. Identification of accessory genome regions in poultry Clostridium perfringens isolates carrying the netb plasmid. J Bacteriol. 2013;195(6):1152–1166.
  • Ran W, Higgs PG. Contributions of speed and accuracy to translational selection in bacteria. PLoS One. 2012;7(12):e51652.
  • Li J, Adams V, Bannam TL, et al. Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev. 2013;77(2):208–233.
  • Bannam TL, Teng WL, Bulach D, et al. Functional identification of conjugation and replication regions of the tetracycline resistance plasmid pCW3 from Clostridium perfringens. J Bacteriol. 2006;188(13):4942–4951.
  • Garnier T, Cole ST. Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP404, from Clostridium perfringens. Plasmid. 1988;19(2):134–150.
  • Watts TD, Vidor CJ, Awad MM, et al. pCP13, a representative of a new family of conjugative toxin plasmids in Clostridium perfringens. Plasmid. 2019;102:37–45.
  • Parreira VR, Costa M, Eikmeyer F, et al. Sequence of two plasmids from Clostridium perfringens chicken necrotic enteritis isolates and comparison with C. perfringens conjugative plasmids. PLoS One. 2012;7(11):e49753.
  • Freedman JC, Theoret JR, Wisniewski JA, et al. Clostridium perfringens type A-E toxin plasmids. Res Microbiol. 2015;166(4):264–279.
  • Revitt-Mills SA, Vidor CJ, Watts TD, et al. Virulence plasmids of the pathogenic Clostridia. Microbiol Spectr. 2019;7(3):10.1128.
  • Bantwal R, Bannam TL, Porter CJ, et al. The peptidoglycan hydrolase TcpG is required for efficient conjugative transfer of pCW3 in Clostridium perfringens. Plasmid. 2012;67(2):139–147.
  • Porter CJ, Bantwal R, Bannam TL, et al. The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from Gram-negative bacteria. Mol Microbiol. 2012;83(2):275–288.
  • Steen JA, Bannam TL, Teng WL, et al. The putative coupling protein TcpA interacts with other pCW3-encoded proteins to form an essential part of the conjugation complex. J Bacteriol. 2009;191(9):2926–2933.
  • Wisniewski JA, Rood JI. The Tcp conjugation system of Clostridium perfringens. Plasmid. 2017;91:28–36.
  • Traore DAK, Wisniewski JA, Flanigan SF, et al. Crystal structure of TcpK in complex with oriT DNA of the antibiotic resistance plasmid pCW3. Nat Commun. 2018;9(1):3732. .
  • Wisniewski JA, Traore DAK, Bannam TL, et al. TcpM: a novel relaxase that mediates transfer of large conjugative plasmids from Clostridium perfringens. Mol Microbiol. 2016;99(5):884–896.
  • Wisniewski JA, Teng WL, Bannam TL, et al. Two novel membrane proteins, TcpD and TcpE, are essential for conjugative transfer of pCW3 in Clostridium perfringens. J Bacteriol. 2015;197(4):774–781.
  • Adams V, Watts TD, Bulach DM, et al. Plasmid partitioning systems of conjugative plasmids from Clostridium perfringens. Plasmid. 2015;80:90–96.
  • Brynestad S, Sarker MR, McClane BA, et al. The enterotoxin (CPE) plasmid from Clostridium perfringens is conjugative. Infect Immun. 2001;69(5):3483–3487.
  • Hughes ML, Poon R, Adams V, et al. Epsilon-toxin plasmids of Clostridium perfringens type D are conjugative. J Bacteriol. 2007;189(21):7531–7538.
  • Bannam T, Yan X, Harrison P, et al. Necrotic enteritis-derived Clostridium perfringens strain with three closely related independently conjugative toxin and antibiotic plasmids. mBio. 2011;2(5):e00190–11.
  • Sayeed S, Li J, McClane BA. Virulence plasmid diversity in Clostridium perfringens type D isolates. Infect Immun. 2007;75(5):2391–2398.
  • Sayeed S, Li J, McClane BA. Characterization of virulence plasmid diversity among Clostridium perfringens type B isolates. Infect Immun. 2010;78(1):495–504.
  • Miyamoto K, Fisher DJ, Li J, et al. Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates. J Bacteriol. 2006;188(4):1585–1598.
  • Li J, Miyamoto K, McClane BA. Comparison of virulence plasmids among Clostridium perfringens type E isolates. Infect Immun. 2007;75(4):1811–1819.
  • Miyamoto K, Li J, Sayeed S, et al. Sequencing and diversity analyses reveal extensive similarities between some epsilon-toxin-encoding plasmids and the pCPF5603 Clostridium perfringens enterotoxin plasmid. J Bacteriol. 2008;190(21):7178–7188.
  • Gurjar A, Li J, McClane BA. Characterization of toxin plasmids in Clostridium perfringens type C isolates. Infect Immun. 2010;78(11):4860–4869.
  • Miyamoto K, Yumine N, Mimura K, et al. Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene. PLoS One. 2011;6(5):e20376.
  • Collie RE, McClane BA. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with nonfoodborne human gastrointestinal diseases. J Clin Microbiol. 1998;36(1):30–36.
  • Cornillot E, Saint-Joanis B, Daube G, et al. The enterotoxin gene (cpe) of Clostridium perfringens can be chromosomal or plasmid-borne. Mol Microbiol. 1995;15(4):639–647.
  • Brynestad S, Synstad B, Granum PE. The Clostridium perfringens enterotoxin gene is on a transposable element in type A human food poisoning strains. Microbiology. 1997;143(7):2109–2115.
  • Billington SJ, Wieckowski EU, Sarker MR, et al. Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin sequences. Infect Immun. 1998;66(9):4531–4536.
  • Lepp D, Roxas B, Parreira V, et al. Identification of novel pathogenicity loci in Clostridium perfringens strains that cause avian nocrotic enteritis. PLoS One. 2010;5(5):e10795.
  • Watts TD, Johanesen PA, Lyras D, et al. Plasmid partitioning systems of conjugative plasmids from Clostridium perfringens. Plasmid. 2017;91:68–75.
  • Watts TD, Traore DAK, Atkinson SC, et al. The specificity of ParR binding determines the compatibility of conjugative plasmids in Clostridium perfringens. BioRexiv. 2018. DOI:10.1101/462192.
  • Collie RE, Kokai-Kun JF, McClane BA. Phenotypic characterization of enterotoxigenic Clostridium perfringens isolates from non-foodborne human gastrointestinal diseases. Anaerobe. 1998;4(2):69–79.
  • Shimizu T, Ba-Thein W, Tamaki M, et al. virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J Bacteriol. 1994;176(6):1616–1623.
  • Shimizu T, Yaguchi H, Ohtani K, et al. Clostridial VirR/ VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol. 2002;43(1):257–265.
  • Rood JI, Lyristis M. Regulation of extracellular toxin production in Clostridium perfringens. Trends Microbiol. 1995;3(5):192–196.
  • Ma M, Vidal J, Saputo J, et al. The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. mBio. 2011;2(1):e00338–00310.
  • Ba-Thein W, Lyristis M, Ohtani K, et al. virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J Bacteriol. 1996;178(9):2514–2520.
  • Ohtani K, Bhowmik SK, Hayashi H, et al. Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens. FEMS Microbiol Lett. 2002;209(1):113–118.
  • Cheung JK, Keyburn AL, Carter G, et al. The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Infect Immun. 2010;78(7):3064–3072.
  • Ohtani K, Hirakawa H, Tashiro K, et al. Identification of a two-component VirR/VirS regulon in Clostridium perfringens. Anaerobe. 2010;16(3):258–264.
  • Cheung JK, Awad MM, McGowan S, et al. Functional analysis of the VirSR phosphorelay from Clostridium perfringens. PLoS One. 2009;4(6):e5849.
  • Li J, McClane BA. Evidence that VirS is a receptor for the signaling peptide of Clostridium perfringens agr-like quorum sensing system. mBio. 2020;11(5):e02219–20.
  • Ohtani K. Gene regulation by the VirS/VirR system in Clostridium perfringens. Anaerobe. 2016;41:5–9.
  • Cheung JK, Rood JI. The VirR response regulator from Clostridium perfringens binds independently to two imperfect direct repeats located upstream of the pfoA promoter. J Bacteriol. 2000;182(1):57–66.
  • Hiscox TJ, Harrison PF, Chakravorty A, et al. Regulation of sialidase production in Clostridium perfringens by the orphan sensor histidine kinase ReeS. PLoS One. 2013;8(9):e73525.
  • Hiscox TJ, Chakravorty A, Choo JM, et al. Regulation of virulence by the RevR response regulator in Clostridium perfringens. Infect Immun. 2011;79(6):2145–2153.
  • Ohtani K, Yuan Y, Hassan S, et al. Virulence gene regulation by the agr system in Clostridium perfringens. J Bacteriol. 2009;191(12):3919–3927.
  • Vidal JE, Ma M, Saputo J, et al. Evidence that the agr-like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of Clostridium perfringens type C isolate CN3685. Mol Microbiol. 2012;83(1):179–194.
  • Navarro MA, Li J, Beingesser J, et al. The Agr-like quorum-sensing system is important for Clostridium perfringens type A strain ATCC 3624 to cause gas gangrene in a mouse model. mSphere. 2020;5(3):e00500–00520.
  • Li J, Chen J, Vidal JE, et al. The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect Immun. 2011;79(6):2451–2459.
  • Yu Q, Lepp D, Mehdizadeh Gohari I, et al. The Agr-like quorum sensing system is required for pathogenesis of necrotic enteritis caused by Clostridium perfringens in poultry. Infect Immun. 2017;85(6):e00975–16.
  • Vidal JE, Shak JR, Canizalez-Roman A. The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms. Infect Immun. 2015;83(6):2430–2442.
  • Jenul C, Horswill AR. Regulation of Staphylococcus aureus virulence. Microbiol Spectr. 2019;7(2). DOI:10.1128/microbiolspec.GPP3-0031-2018.
  • Vidal JE, Chen J, Li J, et al. Use of an EZ-Tn5-based random mutagenesis system to identify a novel toxin regulatory locus in Clostridium perfringens strain 13. PLoS One. 2009;4(7):e6232.
  • Ma M, Li J, McClane BA. Structure-function analysis of peptide signaling in the Clostridium perfringens agr-like quorum sensing system. J Bacteriol. 2015;197(10):1807–1818.
  • Singh R, Okubo K, Ohtani K, et al. Rationale design of quorum-quenching peptides that target the VirSR system of Clostridium perfringens. FEMS Microbiol Lett. 2015;362(22):188.
  • Ohtani K, Shimizu T. Regulation of toxin gene expression in Clostridium perfringens. Res Microbiol. 2016;8(7):207.
  • Ohtani K, Hayashi H, The ST. luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens. Mol Microbiol. 2002;44(1):171–179.
  • Li J, Ma M, Sarker MR, et al. CodY is a global regulator of virulence-associated properties for Clostridium perfringens type D strain CN3718. mBio. 2013;4(5):e00770–00713.
  • Li J, Freedman JC, McClane BA. NanI sialidase, CcpA, and CodY work together to regulate epsilon toxin production by Clostridium perfringens type D strain CN3718. J Bacteriol. 2015;197(20):3339–3353.
  • Varga J, Stirewalt VL, Melville SB. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J Bacteriol. 2004;186(16):5221–5229.
  • Therit B, Cheung JK, Rood JI, et al. NanR, a transcriptional regulator that binds to the promoters of genes involved in sialic acid metabolism in the anaerobic pathogen Clostridium perfringens. PLoS One. 2015;10(7):e0133217.
  • Mi E, Li J, McClane BA. NanR regulates sporulation and enterotoxin production by Clostridium perfringens type F strain F4969. Infect Immun. 2018;86(10):e00416–18.
  • Li J, Paredes-Sabja D, Sarker MR, et al. Clostridium perfringens sporulation and sporulation-associated toxin production. Microbiol Spectr. 2016;4(3). DOI:10.1128/microbiolspec.TBS-0022-2015.
  • Huang IH, Waters M, Grau RR, et al. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol Lett. 2004;233(2):233–240.
  • Freedman JC, Li J, Mi E, et al. Identification of an important orphan histidine kinase for the initiation of sporulation and enterotoxin production by Clostridium perfringens type F strain SM101. mBio. 2019;10(1):e02674–02618.
  • Harry KH, Zhou R, Kroos L, et al. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific factors SigE and SigK in Clostridium perfringens. J Bacteriol. 2009;191(8):2728–2742.
  • Li J, McClane BA. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect Immun. 2010;78(10):4286–4293.
  • Li J, Freedman JC, Evans DR, et al. CodY promotes sporulation and enterotoxin production by Clostridium perfringens type A strain SM101. Infect Immun. 2017;85(3):e00855–16.
  • Ohtani K, Hirakawa H, Paredes-Sabja D, et al. Unique regulatory mechanism of sporulation and enterotoxin production in Clostridium perfringens. J Bacteriol. 2013;195(12):2931–2936.
  • Shen A, Edwards AN, Sarker MR, et al. Sporulation and germination in Clostridia pathogens. Microbiol Spectr. 2019;7(6):10.1128.
  • Stevens DL, Aldape MJ, Bryant AE. Life-threatening clostridial infections. Anaerobe. 2012;18(2):254–259.
  • Buboltz JB, Murphy-Lavoie HM. Gas gangrene. In StatPearls: StatPearls Publishing; 2020.
  • Shindo Y, Dobashi Y, Sakai T, et al. Epidemiological and pathobiological profiles of Clostridium perfringens infections: review of consecutive series of 33 cases over a 13-year period. Int J Clin Exp Pathol. 2015;8(1):569–577.
  • Yang Z, Hu J, Qu Y, et al. Interventions for treating gas gangrene. Cochrane Database Syst Rev. 2015;12:CD010577.
  • Chen E, Deng L, Liu Z, et al. Management of gas gangrene in Wenchuan earthquake victims. J Huazhong Univ Sci Technolog Med Sci. 2011;31(1):83–87.
  • Bryant AE, Stevens DL. Clostridial myonecrosis: new insights in pathogenesis and management. Curr Infect Dis Rep. 2010;12(5):383–391.
  • Peek SF, Semrad SD, Perkins GA. Clostridial myonecrosis in horses (37 cases 1985-2000). Equine Vet J. 2003;35(1):86–92.
  • Uzal FA. Diseases produced by Clostridium perfringens type A in mammalian species. In: Uzal FA, Songer JG, Prescott JF, et al., editors. Clostridial Diseases of Animals. John Wiley & Sons, Inc; 2016. p. 107–116.
  • Sindern N, Suchodolski JS, Leutenegger CM, et al. Prevalence of Clostridium perfringens netE and netF toxin genes in the feces of dogs with acute hemorrhagic diarrhea syndrome. J Vet Intern Med. 2019;33(1):100–105.
  • Mehdizadeh Gohari I, Unterer S, Whitehead AE, et al. NetF-producing Clostridium perfringens and its associated diseases in dogs and foals. J Vet Diagn Invest. 2020;32(2):230–238.
  • Uzal FA, Songer JG. Infections by Clostridium perfringens type B. In: Uzal FA, Songer JG, Prescott JF, et al., editors. In: clostridial Diseases of Animals. Willey and Blackwell; 2016. p. 139–142.
  • Munday JS, Bentall H, Aberdein D, et al. Death of a neonatal lamb due to Clostridium perfringens type B in New Zealand. N Z Vet J. 2020;68(4):242–246.
  • Uzal FA. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Anaerobe. 2004;10(2):135–143.
  • Uzal FA, Songer G. Diagnosis of Clostridium perfringens intestinal infections in sheep and goat. J Vet Diagn Invest. 2008;20(3):253–265.
  • Rumah KR, Linden J, Fischetti VA, et al. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One. 2013;8(10):e76359.
  • Wagley S, Bokori-Brown M, Morcrette H, et al. Evidence of Clostridium perfringens epsilon toxin associated with multiple sclerosis. Mult Scler. 2019;25(5):653–660. .
  • Diab SS, Kinde H, Moore J, et al. Pathology of Clostridium perfringens type C enterotoxemia in horses. Vet Pathol. 2012;49(2):255–263.
  • Sayeed S, Uzal FA, Fisher DJ, et al. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol Microbiol. 2008;67(1):15–30.
  • Diab SS. Diseases produced by Clostridium perfringens type C. In: Uzal FA, Songer G, Prescott JF, et al., editors. In: clostridial Diseases of Animals. Willy and Blackwell; 2016. p. 143–155.
  • Johnson S, Gerding DN. Enterotoxemic infections. In: Rood JI, McClane BA, Songer JG, et al., editors. The Clostridia: molecular Biology and Pathogenesis. London: Academic Press; 1997. p. 117–140.
  • Lawrence G, Cooke R. Experimental pigbel: the production and pathology of necrotizing enteritis due to Clostridium welchii type C in the guinea-pig. Br J Exp Pathol. 1980;61(3):261–271.
  • Kreft B, Dalhoff K, Sack K. Necrotizing enterocolitis: a historical and current review. Med Clin. 2000;95(8):435–441.
  • Matsuda T, Okada Y, Inagi E, et al. Enteritis necroticans ‘pigbel’ in a Japanese diabetic adult. Pathol. 2007;57(9):622–626.
  • Petrillo TM, Beck-Sague CM, Songer JG, et al. Enteritis necroticans (pigbel) in a diabetic child. N Engl J Med. 2000;342(17):1250–1253.
  • Garcia JP, Anderson M, Blanchard P, et al. The pathology of enterotoxemia by Clostridium perfringens type C in calves. J Vet Diagn Invest. 2013;25(3):438–442.
  • Uzal FA, Giannetti F, Finn JW, et al. Diseases produced by Clostridium perfringens type D. In: Uzal FA, Songer G, Prescott JF, et al., editors. Clostridial Diseases of Animals. Wiley and Blackwell; 2016. p. 157–172.
  • Li J, McClane BA. Unpublished data 2020.
  • Kim HY, Byun JW, Roh IS, et al. First isolation of Clostridium perfringens type E from a goat with diarrhea. Anaerobe. 2013;22:141–143.
  • Songer JG, Miskimmins DW. Clostridium perfringens type E enteritis in calves: two cases and a brief review of the literature. Anaerobe. 2004;10(4):239–242.
  • Songer G. Infections by Clostridium perfringens type E. In: Uzal FA, Songer G, Prescott JF, et al., editors. Clostridial Diseases of Animals. Wiley and Blackwell; 2016. p. 173–176.
  • Bos J, Smithee L, McClane BA, et al. Fatal necrotizing colitis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clin Infect Dis. (10):78–83.
  • Centers for Disease, Control, Prevention (CDC). Fatal foodborne Clostridium perfringens illness at a state psychiatric hospital-Louisiana. Morb Mortal Wkly Rep. 2012;61(32):605–608.
  • Bamford C, Milligan P, Kaliski S. Dangers of Clostridium perfringens food poisoning in psychiatric patients. S Afr J Psychiatr. 2019;25:1339.
  • McClane BA, Uzal FA, Miyakawa MF, et al. The enterotoxic Clostridia. In: Dworkin M, Falkow S, Rosenburg E, et al., editors. The Prokaryotes. 3rd ed. New York: Springer NY press; 2006. p. 688–752.
  • The true cost of necrotic enteritis [https://www.poultry.net/Meat/2015/10/The-true-cost-of-necrotic-enteritis–2699819W].
  • Cooper KK, Songer JG. Necrotic enteritis in chickens: a paradigm of enteric infection by Clostridium perfringens type A. Anaerobe. 2009;15(2):55–60.
  • Cooper KK, Songer JG. Virulence of Clostridium perfringens in an experimental model of poultry necrotic enteritis. Vet Microbiol. 2010;142(3):323–328.
  • Cooper KK, Songer JG, Uzal FA. Diagnosing clostridial enteric disease in poultry. J Vet Diagn Invest. 2013;25(3):314–327.
  • Prescott JF, Parreira VR, Mehdizadeh Gohari I, et al. The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know: a review. Avian Pathol. 2016;45(3):288–294.
  • La Ragione RM, Woodward MJ. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet Microbiol. 2003;94(3):245–256.
  • Lovland A, Kaldhusdal M, Redhead K, et al. Maternal vaccination against subclinical necrotic enteritis in broilers. Avian Pathol. 2004;33(1):83–92.
  • Crispo M, Simone TS, Uzal FA, et al. Nonenteric lesions of necrotic enteritis in commercial chickens in California: 25 cases (2009–2018). Avian Dis. 2020;64(3):356–364.
  • Chen Y, McClane BA, Fisher DJ, et al. Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron. Appl Environ Microbiol. 2005;71(11):7542–7547.
  • Walker PD, Murrell TG, Nagy LK. Scanning electromicroscopy of jejunum in enteritis necroticans. J Med Microbiol. 1980;13(3):445–450.
  • Navarro MA, Li J, McClane BA, et al. NanI sialidase is an important contributor to Clostridium perfringens type F strain F4969 intestinal colonization in mice. Infect Immun. 2018;86(12):e00462–18.
  • Theoret JR, Li J, Navarro MA, et al. Native or proteolytically activated NanI sialidase enhances the binding and cytotoxic activity of Clostridium perfringens enterotoxin and beta toxin. Infect Immun. 2018;86(1):e00730–17.
  • Li J, McClane BA. NanI sialidase can support the growth and survival of Clostridium perfringens strain F4969 in the presence of sialylated host macromolecules (Mucin) or Caco-2 cells. Infect Immun. 2018;86(2):e00547–17.
  • Severi E, Hood DW, Thomas GH. Sialic acid utilization by bacterial pathogens. Microbiol. 2007;153(9):2817–2822.
  • Lewis AL, Lewis WG. Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell Microbiol. 2012;14(8):1174–1182.
  • Jost BH, Billington SJ, Trinh HT, et al. Association of genes encoding beta2 toxin and a collagen binding protein in Clostridium perfringens isolates of porcine origin. Vet Microbiol. 2006;115(1–3):173–182.
  • Martin TG, Smyth JA. The ability of disease and non-disease producing strains of Clostridium perfringens from chickens to adhere to extracellular matrix molecules and Caco-2 cells. Anaerobe. 2010;16(5):533–539.
  • Wade B, Keyburn AL, Seemann T, et al. Binding of Clostridium perfringens to collagen correlates with the ability to cause necrotic enteritis in chickens. Vet Microbiol. 2015;180(3–4):299–303.
  • Katayama S, Nozu N, Okuda M, et al. Characterization of two putative fibronectin-binding proteins of Clostridium perfringens. Anaerobe. 2009;15(4):155–159.
  • Hitsumoto Y, Morita N, Yamazoe R, et al. Adhesive properties of Clostridium perfringens to extracellular matrix proteins collagens and fibronectin. Anaerobe. 2014;25:67–71.
  • Katayama S, Tagomori M, Morita N, et al. Determination of the Clostridium perfringens-binding site on fibronectin. Anaerobe. 2015;34:174–181.
  • Henderson B, Nair S, Pallas J, et al. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev. 2011;35(1):147–200.
  • Awad MM, Bryant AE, Stevens DL, et al. Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene. Mol Microbiol. 1995;15(2):191–202.
  • Awad MM, Ellemor DM, Boyd RL, et al. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect Immun. 2001;69(12):7904–7910.
  • Ochi S, Oda M, Matsuda H, et al. Clostridium perfringens alpha-toxin activates the sphingomyelin metabolism system in sheep erythrocytes. J Biol Chem. 2004;279(13):12181–12189.
  • Ochi S, Oda M, Nagahama M, et al. Clostridium perfringens alpha-toxin-induced hemolysis of horse erythrocytes is dependent on Ca2+ uptake. Biochim Biophys Acta. 2003;1613(1–2):79–86.
  • Bryant AE, Stevens DL. Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis in cultured human umbilical vein endothelial cells. Infect Immun. 1996;64(1):358–362.
  • Bryant AE, Bergstrom R, Zimmerman GA, et al. Clostridium perfringens invasiveness is enhanced by effects of theta toxin upon PMNL structure and function: the role of leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein. FEMS Immunol Med Microbiol. 1993;7(4):321e326.
  • Sugahara T, Takahashi T, Yamaya S, et al. In vitro aggregation of platelets induced by alpha-toxin (phospholipase C) of Clostridium perfringens. Jap J Med Sci Biol. 1976;29(5):255–263. .
  • Titball RW, Naylor CE, Basak AK. The Clostridium perfringens alpha-toxin. Anaerobe. 1999;5(2):51–64.
  • Takehara M, Takagishi T, Seike S, et al. Clostridium perfringens α-Toxin impairs innate immunity via inhibition of neutrophil differentiation. Sci Rep. 2016;6(1):28192.
  • Oda M, Kabura M, Takagishi T, et al. Clostridium perfringens alpha-toxin recognizes the GM1a-TrkA complex. J Biol Chem. 2012;287(39):33070–33079. .
  • Stevens DL, Mitten J, Henry C. Effects of alpha and theta toxins from Clostridium perfringens on human polymorphonuclear leukocytes. J Infect Dis. 1987;156(2):324–333.
  • O’Brien DK, Melville SB. The anaerobic pathogen Clostridium perfringens can escape the phagosome of macrophages under aerobic conditions. Cell Microbiol. 2000;2(6):505–519.
  • O’Brien DK, Melville SB. Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues. Infect Immun. 2004;72(9):5204–5215.
  • Fernandez-Miyakawa ME, Fisher DJ, Poon R, et al. Both epsilon-toxin and beta-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infect Immun. 2007;75(3):1443–1452.
  • Uzal FA, McClane BA. Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections. Vet Microbiol. 2011;153(2):37–43.
  • Ma M, Gurjar A, Theoret JR, et al. Synergistic effects of Clostridium perfringens enterotoxin and beta toxin in rabbit small intestinal loops. Infect Immun. 2014;82(7):2958–2970.
  • Vidal JE, McClane BA, Saputo J, et al. Effects of Clostridium perfringens beta-toxin on the rabbit small intestine and colon. Infect Immun. 2008;76(10):4396–4404.
  • Uzal FA, Fisher DJ, Saputo J, et al. Ulcerative enterocolitis in two goats associated with enterotoxin- and beta2 toxin-positive Clostridium perfringens type D. J Vet Diagn Invest. 2008;20(5):668–672.
  • Filho EJF, Carvalho AU, Assis RA, et al. Clinicopathologic features of experimental Clostridium perfringens type D enterotoxemia in cattle. Vet Pathol. 2009;46(6):1213–1220. .
  • Garcia JP, Adams V, Beingesser J, et al. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats and mice. Infect Immun. 2013;81(7):2405–2414.
  • Sarker MR, Carman RJ, McClane BA. Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol Microbiol. 1999;33(5):946–958.
  • McDonel JL. Toxins of Clostridium perfringens types A, B, C, D, and E. In: Dorner F, Drews H, editors. Pharmacology of Bacterial Toxins. Oxford: Pergamon Press; 1986. p. 477–517.
  • Smedley JG, Saputo J, Parker JC, et al. Noncytotoxic Clostridium perfringens enterotoxin (CPE) variants localize intestinal binding and demonstrate a relationship between CPE-induced cytotoxicity and enterotoxicity. Infect Immun. 2008;76(8):3793–3800.
  • Sherman S, Klein E, McClane BA. Clostridium perfringens type A enterotoxin induces concurrent development of tissue damage and fluid accumulation in the rabbit ileum. J Diarrheal Dis Res. 1994;12(3):200–207.
  • Shrestha A, Hendricks MR, Bomberger JM, et al. Bystander host cell killing of Clostridium perfringens enterotoxin. mBio. 2016;7(6):e02015–16.
  • Garcia JP, Li J, Shrestha A, et al. Clostridium perfringens type A enterotoxin damages the rabbit colon. Infect Immun. 2014;82(6):2211–2218.
  • Miyakawa MEF, Creydt VP, Uzal FA, et al. Clostridium perfringens enterotoxin damages the human intestine in vitro. Infect Immun. 2005;73(12):8407–8410.
  • Keyburn AL, Sheedy SA, Ford ME, et al. Alpha-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens. Infect Immun. 2006;74(11):6496–6500.
  • Johansson A, Aspan A, Kaldhusdal M, et al. Genetic diversity and prevalence of netB in Clostridium perfringens isolated from a broiler flock affected by mild necrotic enteritis. Vet Microbiol. 2010;144(2):87–92.
  • Abildgaard L, Sondergaard TE, Engberg RM, et al. In vitro production of necrotic enteritis toxin B, NetB, by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chicken. Vet Microbiol. 2010;144(1):231–235.
  • Brady J, Hernandez-Doria JD, Bennett C, et al. Toxinotyping of necrotic enteritis-producing and commensal isolates of Clostridium perfringens from chickens fed organic diets. Avian Pathol. 2010;39(6):475–481.
  • Martin TG, Smyth JA. Prevalence of netB among some clinical isolates of Clostridium perfringens from animals in the United States. Vet Microbiol. 2009;136(1):202–205.
  • Smyth JA, Martin TG. Disease producing capability of netB positive isolates of C. perfringens recovered from normal chickens and a cow, and netB positive and negative isolates from chickens with necrotic enteritis. Vet Microbiol. 2010;146(1–2):76–84.
  • Stevens DL, Rood JI. Histotoxic Clostridia. In: Fischetti VA, Novick RP, Ferretti JJ, et al., editors. Gram-positive Pathogens. 2nd ed. Washington, DC: ASM press; 2006. p. 715–725.
  • Goldstein J, Morris WE, Loidl CF, et al. Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats. PLoS One. 2009;4(9):e7065.
  • Fernandez-Miyakawa ME, Sayeed S, Fisher DJ, et al. Development and application of an oral challenge mouse model for studying Clostridium perfringens type D infection. Infect Immun. 2007;75(9):4282–4288.
  • Mander KA, Uzal FA, Williams R, et al. Clostridium perfringens type D epsilon toxin produces a rapid and dose-dependent cytotoxic effect on cerebral microvascular endothelial cells in vitro. J Vet Diagn Invest. 2020;32(2):277–281.
  • Buxton D, Morgan KT. Studies of lesions produced in the brains of colostrum deprived lambs by Clostridium welchii (Clostridium perfringens) type D toxin. J Comp Path. 1976;86(3):435–447. .
  • Finnie JW, Blumbergs PC, Manavis J. Neuronal damage produced in rat brains by Clostridium perfringens type D epsilon toxin. J Comp Pathol. 1999;120(4):415–420.
  • Finnie JW. Pathogenesis of brain damage produced in sheep by Clostridium perfringens type D epsilon toxin: a review. Aust Vet J. 2003;81(4):219–221.
  • Popoff MR. Epsilon toxin: a fascinating pore-forming toxin. Febs J. 2011;278(23):4602–4615.
  • Fisher DJ, Fernandez-Miyakawa ME, Sayeed S, et al. Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect Immun. 2006;74(9):5200–5210.
  • Garcia J, Beingesser J, Fisher DJ, et al. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutants in goats. Vet Microbiol. 2012;157(3–4):412–419.
  • Posthaus H, Kittl S, Tarek B, et al. Clostridium perfringens type C necrotic enteritis in pigs: diagnosis, pathogenesis, and prevention. J Vet Diagn Invest. 2020;32(2):203–212.
  • Chen J, Ma M, Uzal FA, et al. Host cell-induced signaling causes Clostridium perfringens to upregulate production of toxins important for intestinal infections. Gut Microbes. 2014;5(1):96–107.
  • Sakurai J, Nagahama M, Oda M. Clostridium perfringens alpha-toxin: characterization and mode of action. J Biochem. 2004;136(5):569–574.
  • Tweten RK. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun. 2005;73(10):6199–6209.
  • Adams JJ, Gregg K, Bayer EA, et al. Structural basis of Clostridium perfringens toxin complex formation. Proc Natl Acad Sci U S A. 2008;105(34):12194–12199.
  • Gilbert RJ. Cholesterol-dependent cytolysins. Adv Exp Med Biol. 2010;677:56–66.
  • Shepard LA, Shatursky O, Johnson AE, et al. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochem. 2000;39(33):10284–10293.
  • Petit L, Maier E, Gibert M, et al. Clostridium perfringens epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers. J Biol Chem. 2001;276(19):15736–15740.
  • Hardy SP, Denmead M, Parekh N, et al. Cationic currents induced by Clostridium perfringens type A enterotoxin in human intestinal Caco-2 cells. J Med Microbiol. 1999;48(3):235–243.
  • Shatursky O, Bayles R, Rogers M, et al. Clostridium perfringens beta-toxin forms potential-dependent, cation-selective channels in lipid bilayers. Infect Immun. 2000;68(10):5546–5551.
  • Knapp O, Benz R, Gibert M, et al. Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem. 2002;277(8):6143–6152.
  • Li J, Miyamoto K, Sayeed S, et al. Organization of the cpe locus in CPE-positive Clostridium perfringens type C and D isolates. PLoS One. 2010;5(6):e10932.
  • Revitt-Mills SA, Rood JI, Adams V. Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiol Aust. 2015;36(3):114–117.
  • Adams V, Li J, Wiosniewski JA, et al. Virulence plasmids of spore-forming bacteria. Microbiol Spectr. 2014;2(6):10.1128.
  • Fisher DJ, Miyamoto K, Harrison B, et al. Association of beta2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Mol Microbiol. 2005;56(3):747–762.
  • Lacey JA, Allnutt TR, Vezina B, et al. Whole genome analysis reveals the diversity and evolutionary relationships between necrotic enteritis-causing strains of Clostridium perfringens. BMC Genomics. 2018;19(1):379.
  • Mehdizadeh Gohari I, Kropinski AM, Weese SJ, et al. NetF-producing Clostridium perfringens: clonality and plasmid pathogenicity loci analysis. Infect Genet Evol. 2017;49:32–38.
  • Ohtani K, Shimizu T. Regulation of toxin production in Clostridium perfringens. Toxins (Basel). 2016;8(7):207.