3,311
Views
12
CrossRef citations to date
0
Altmetric
Review Article

“Core” RxLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants?

, &
Pages 1921-1935 | Received 09 Feb 2021, Accepted 18 Jun 2021, Published online: 25 Jul 2021

References

  • Rahman MH. Exploring sustainability to feed the world in 2050. J Food Microbiol. 2016;1(1).
  • Röös E, Bajželj B, Smith P, et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob Environ Change. 2017;47:1–12.
  • Jones JD, Dangl JL. The plant immune system. nature. 2006;444(7117):323–329.
  • Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol. 2009;60(1):379–406.
  • Thomma BP, Nürnberger T, Joosten MH. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell. 2011;23(1):4–15.
  • Spoel SH, Dong X. How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol. 2012;12(2):89–100.
  • Saijo Y, Loo E. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 2020;225(1):87–104.
  • Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014;35(7):345–351.
  • Upson JL, Zess EK, Białas A, et al. The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Curr Opin Plant Biol. 2018;44:108–116.
  • Turnbull D, Yang L, Naqvi S, et al. RXLR effector AVR2 up-regulates a brassinosteroid-responsive bHLH transcription factor to suppress immunity. Plant Physiol. 2017;174(1):356–369. .
  • Naveed ZA, Wei X, Chen J, et al. The PTI to ETI Continuum in Phytophthora-Plant Interactions. Front Plant Sci. 2020;11:2030.
  • Vleeshouwers VG, Finkers R, Budding D, et al. SolRgene: an online database to explore disease resistance genes in tuber-bearing Solanumspecies. BMC Plant Biol. 2011;11(1):116. .
  • Gisi U, Sierotzki H. Springer: Fungicide modes of action and resistance in downy mildews. The Downy Mildews-Genetics, Molecular Biology and Control; 2008. 157–167.
  • Gray MA, Hao W, Förster H, et al. Baseline sensitivities of new fungicides and their toxicity to selected life stages of Phytophthora species from citrus in California. Plant Dis. 2018;102(4):734–742.
  • Fry W. Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol. 2008;9(3):385–402.
  • Haverkort A, Boonekamp P, Hutten R, et al. Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: scientific and societal advances in the DuRPh project. Potato Res. 2016;59(1):35–66. .
  • Douglas E, Halpin C. Gene stacking. Mol Tech Crop Improve. 2010;p. 613–29.
  • Zhu S, Li Y, Vossen JH, et al. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res. 2012;21(1):89–99.
  • Vleeshouwers VG, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant-Microbe Interact. 2014;27(3):196–206.
  • Baltrus DA, Nishimura MT, Romanchuk A, et al. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog. 2011;7(7):e1002132. .
  • Bart R, Cohn M, Kassen A, et al. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc Nat Acad Sci. 2012;109(28):E1972–E9.
  • Dangl JL, Horvath DM, Staskawicz BJ. Pivoting the plant immune system from dissection to deployment. Science. 2013;341(6147):746–751.
  • De Jonge R, Van Esse HP, Kombrink A, et al. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. science. 2010;329(5994):953–955. .
  • Marshall R, Kombrink A, Motteram J, et al. Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol. 2011;156(2):756–769. .
  • Mentlak TA, Kombrink A, Shinya T, et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell. 2012;24(1):322–335. .
  • Saitoh H, Fujisawa S, Mitsuoka C, et al. Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS Pathog. 2012;8(5):e1002711. .
  • Hemetsberger C, Mueller AN, Matei A, et al. The fungal core effector P ep1 is conserved across smuts of dicots and monocots. New Phytol. 2015;206(3):1116–1126. .
  • Thines M, Kamoun S. Oomycete–plant coevolution: recent advances and future prospects. Curr Opin Plant Biol. 2010;13(4):427–433.
  • McGowan J, Fitzpatrick DA. Recent advances in oomycete genomics. Adv Genet. 2020;105:175–228.
  • Rizzo DM, Garbelotto M, Hansen EM. Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu Rev Phytopathol. 2005;43(1):309–335.
  • Haas BJ, Kamoun S, Zody MC, et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature. 2009;461(7262):393–398. .
  • Tyler BM. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol Plant Pathol. 2007;8(1):1–8.
  • Hardham AR. Phytophthora cinnamomi. Mol Plant Pathol. 2005;6(6):589–604.
  • Dussert Y, Mazet ID, Couture C, et al. A high-quality grapevine downy mildew genome assembly reveals rapidly evolving and lineage-specific putative host adaptation genes. Genome Biol Evol. 2019;11(3):954–969. .
  • Fletcher K, Gil J, Bertier LD, et al. Genomic signatures of heterokaryosis in the oomycete pathogen Bremia lactucae. Nat Commun. 2019;10(1):1–13. .
  • Blackman LM, Cullerne DP, Torrena P, et al. RNA-Seq analysis of the expression of genes encoding cell wall degrading enzymes during infection of lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS One. 2015;10(9):e0136899.
  • McGowan J, Fitzpatrick DA. Genomic, network, and phylogenetic analysis of the oomycete effector arsenal. MSphere 2017;2(6):6.
  • Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes. Ann Rev Phytopathol. 2006;44.
  • Tian M, Win J, Song J, et al. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol. 2007;143(1):364–377.
  • Ma Z, Zhu L, Song T, et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science. 2017;355(6326):710–714. .
  • Wawra S, Belmonte R, Löbach L, et al. Secretion, delivery and function of oomycete effector proteins. Curr Opin Microbiol. 2012;15(6):685–691.
  • Whisson SC, Boevink PC, Moleleki L, et al. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature. 2007;450(7166):115–118. .
  • Schornack S, van Damme M, Bozkurt TO, et al. Ancient class of translocated oomycete effectors targets the host nucleus. Proc Nat Acad Sci. 2010;107(40):17421–17426. .
  • Wang Q, Han C, Ferreira AO, et al. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell. 2011;23(6):2064–2086. .
  • Zheng X, McLellan H, Fraiture M, et al. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLoS Pathog. 2014;10(4):e1004057. .
  • Yin J, Gu B, Huang G, et al. Conserved RXLR effector genes of Phytophthora infestans expressed at the early stage of potato infection are suppressive to host defense. Front Plant Sci. 2017;8:2155.
  • Lei X, Lan X, Ye W, et al. Plasmopara viticola effector PvRXLR159 suppresses immune responses in Nicotiana benthamiana. Plant Signal Behav. 2019;14(12):1682220.
  • Deb D, Anderson RG, How-Yew-Kin T, et al. Conserved RxLR effectors from oomycetes Hyaloperonospora arabidopsidis and Phytophthora sojae suppress PAMP-and effector-triggered immunity in diverse plants. Mol Plant-Microbe Interact. 2018;31(3):374–385.
  • Anderson R, Deb D, Withers J, et al. An oomycete RXLR effector triggers antagonistic plant hormone crosstalk to suppress host immunity. bioRxiv 2019;561605.
  • Lévesque CA, Brouwer H, Cano L, et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 2010;11(7):R73. .
  • Adhikari BN, Hamilton JP, Zerillo MM, et al. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PloS One. 2013;8(10):e75072.
  • Rujirawat T, Patumcharoenpol P, Lohnoo T, et al. Probing the phylogenomics and putative pathogenicity genes of Pythium insidiosum by oomycete genome analyses. Sci Rep. 2018;8(1):1–14. .
  • Ai G, Yang K, Ye W, et al. Prediction and Characterization of RXLR Effectors in Pythium Species. Mol Plant-Microbe Interact. 2020;33(ja):1046–1058. .
  • Kemen E, Gardiner A, Schultz-Larsen T, et al. Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol. 2011;9(7):e1001094. .
  • Thines M, Sharma R, Rodenburg SY, et al. The genome of Peronospora belbahrii reveals high heterozygosity, a low number of canonical effectors, and TC-rich promoters. Mol Plant-Microbe Interact. 2020;33(5):742–753. .
  • Birch PR, Armstrong M, Bos J, et al. Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. J Exp Bot. 2009;60(4):1133–1140. .
  • Anderson RG, Deb D, Fedkenheuer K, et al. Recent progress in RXLR effector research. Mol Plant-Microbe Interact. 2015;28(10):1063–1072.
  • Whisson SC, Boevink PC, Wang S, et al. The cell biology of late blight disease. Curr Opin Microbiol. 2016;34:127–135.
  • Krishnan A, Joseph L, Roy CB. An insight into Hevea-Phytophthora interaction: the story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Curr Plant Biol. 2019;17:33–41.
  • Wang J, Gao C, Li L, et al. Transgenic RXLR effector PITG_15718. 2 suppresses immunity and reduces vegetative growth in potato. Int J Mol Sci. 2019;20(12):3031. .
  • Chepsergon J, Motaung TE, Bellieny-Rabelo D, et al. Organize, Don’t Agonize: strategic Success of Phytophthora Species. Microorganisms. 2020;8(6):917.
  • Boevink PC, Birch PR, Turnbull D, et al. Devastating intimacy: the cell biology of plant–Phytophthora interactions. In: New Phytologist. 2020.
  • Charlebois RL, Doolittle WF. Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res. 2004;14(12):2469–2477.
  • Cooke DE, Cano LM, Raffaele S, et al. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathog. 2012;8(10):e1002940. .
  • Santhanam P, Van Esse HP, Albert I, et al. Evidence for functional diversification within a fungal NEP1-like protein family. Mol Plant-Microbe Interact. 2013;26(3):278–286.
  • Depotter JR, Doehlemann G. Target the core: durable plant resistance against filamentous plant pathogens through effector recognition. Pest Manag Sci. 2020;76(2):426–431.
  • Benson DA, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Res. 2012;41(D1):D36–D42. .
  • Ali SS, Shao J, Lary DJ, et al. Phytophthora megakarya and Phytophthora palmivora, closely related causal agents of cacao black pod rot, underwent increases in genome sizes and gene numbers by different mechanisms. Genome Biol Evol. 2017;9(3):536–557. .
  • Vetukuri RR, Tripathy S, Malar CM, et al. Draft genome sequence for the tree pathogen Phytophthora plurivora. Genome Biol Evol. 2018;10(9):2432–2442. .
  • Raffaele S, Win J, Cano LM, et al. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics. 2010;11(1):1–18.
  • Engelbrecht J, Duong TA, Prabhu SA, et al. van den Berg N. Genome of the destructive oomycete Phytophthora cinnamomi provides insights into its pathogenicity and adaptive potential. BMC Genomics. 2021;22(1):1–15.
  • Jiang RH, Tripathy S, Govers F, et al. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proceedings of the National Academy of Sciences. 2008;105( 12):4874–4879.
  • Prince VE, Pickett FB. Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet. 2002;3(11):827–837.
  • Yang L, Ouyang HB, Fang ZG, et al. Evidence for intragenic recombination and selective sweep in an effector gene of Phytophthora infestans. Evol Appl. 2018;11(8):1342–1353. .
  • Armenteros JJA, Tsirigos KD, Sønderby CK, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420–423. .
  • Dalio R, Maximo H, Oliveira T, et al. Phytophthora parasitica effector PpRxLR2 suppresses Nicotiana benthamiana immunity. Mol Plant-Microbe Interact. 2018;31(4):481–493. .
  • Armitage AD, Lysøe E, Nellist CF, et al. Bioinformatic characterisation of the effector repertoire of the strawberry pathogen Phytophthora cactorum. PloS One. 2018;13(10):e0202305. .
  • Pecrix Y, Buendia L, Penouilh‐Suzette C, et al. Sunflower resistance to multiple downy mildew pathotypes revealed by recognition of conserved effectors of the oomycete Plasmopara halstedii. Plant J. 2019;97(4):730–748. .
  • Rojas-Estevez P, Urbina-Gómez DA, Ayala-Usma DA, et al. Effector Repertoire of Phytophthora betacei: in Search of Possible Virulence Factors Responsible for Its Host Specificity. Front Genet. 2020;11:579.
  • Mestre P, Carrere S, Gouzy J, et al. Comparative analysis of expressed CRN and RXLR effectors from two Plasmopara species causing grapevine and sunflower downy mildew. Plant Pathol. 2016;65(5):767–781. .
  • Anderson RG, Casady MS, Fee RA, et al. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants. Plant J. 2012;72(6):882–893. .
  • Win J, Morgan W, Bos J, et al. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell. 2007;19(8):2349–2369. .
  • Lindeberg M, Cunnac S, Collmer A. Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol. 2012;20(4):199–208.
  • Yu X, Tang J, Wang Q, et al. The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death. New Phytol. 2012;196(1):247–260. .
  • Kong L, Qiu X, Kang J, et al. A Phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection. Curr Biol. 2017;27(7):981–991. .
  • Thilliez GJ, Armstrong MR, Lim TY, et al. Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. New Phytol. 2019;221(3):1634–1648. .
  • Liu T, Song T, Zhang X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat Commun. 2014;5(1):1–10.
  • Wang S, Welsh L, Thorpe P, Whisson SC, Boevink PC, Birch PR. The Phytophthora infestans haustorium is a site for secretion of diverse classes of infection-associated proteins. MBio. 2018;9:4.
  • Gu B, Kale SD, Wang Q, et al. Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells. PLoS One. 2011;6(11):e27217. .
  • Kale SD, Gu B, Capelluto DG, et al. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell. 2010;142(2):284–295. .
  • Nur M, Wood K, Michelmore R. EffectorO: motif-independent prediction of effectors in oomycete genomes using machine learning and lineage specificity. In bioRxiv. 2021.
  • Meijer HJ, Mancuso FM, Espadas G, et al. Profiling the secretome and extracellular proteome of the potato late blight pathogen Phytophthora infestans. Mol Cell Proteomics. 2014;13(8):2101–2113. .
  • Severino V, Farina A, Fleischmann F, et al. Molecular profiling of the Phytophthora plurivora secretome: a step towards understanding the cross-talk between plant pathogenic oomycetes and their hosts. PloS One. 2014;9(11):e112317. .
  • McGowan J, O’Hanlon R, Owens RA, et al. Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. Microorganisms. 2020;8(5):653.
  • Armstrong MR, Whisson SC, Pritchard L, et al. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proceedings of the National Academy of Sciences. 2005;102( 21):7766–7771.
  • Bos JI, Armstrong MR, Gilroy EM, et al. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceedings of the National Academy of Sciences. 2010;107( 21):9909–9914.
  • Xiong Q, Ye W, Choi D, et al. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. Mol Plant-Microbe Interact. 2014;27(12):1379–1389. .
  • Vetukuri RR, Whisson SC, Grenville-Briggs LJ. Phytophthora infestans effector Pi14054 is a novel candidate suppressor of host silencing mechanisms. EurJ Plant Pathol. 2017;149(3):771–777.
  • Tomczynska I, Stumpe M, Mauch F. A conserved Rx LR effector interacts with host RABA‐type GTP ases to inhibit vesicle‐mediated secretion of antimicrobial proteins. Plant J. 2018;95(2):187–203.
  • Evangelisti E, Gogleva A, Hainaux T, et al. Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors. BMC Biol. 2017;15(1):39. .
  • Li T, Wang Q, Feng R, et al. Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a‐like effectors. New Phytol. 2019. DOI:10.1111/nph.16139.
  • He J, Ye W, Choi DS, et al. Structural analysis of Phytophthora suppressor of RNA silencing 2 (PSR2) reveals a conserved modular fold contributing to virulence. Proceedings of the National Academy of Sciences. 2019;116( 16):8054–8059.
  • Boutemy LS, King SR, Win J, et al. Structures of Phytophthora RXLR effector proteins a conserved but adaptable fold underpins functional diversity. J Biol Chem. 2011;286(41):35834–35842. .
  • Dou D, Kale SD, Wang X, et al. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell. 2008;20(7):1930–1947. .
  • King SR, McLellan H, Boevink PC, et al. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKKε to suppress plant immune signaling. Plant Cell. 2014;26(3):1345–1359. .
  • Win J, Krasileva KV, Kamoun S, et al. Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic oomycete species. PLoS Pathog. 2012;8(1):e1002400.
  • Du Y, Mpina MH, Birch PR, et al. Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity. Plant Physiol. 2015;169(3):1975–1990.
  • Qiao Y, Shi J, Zhai Y, et al. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proceedings of the National Academy of Sciences. 2015;112( 18):5850–5855.
  • Xiang J, Li X, Yin L, et al. A candidate RxLR effector from Plasmopara viticola can elicit immune responses in Nicotiana benthamiana. BMC Plant Biol. 2017;17(1):75. .
  • Combier M, Evangelisti E, Piron M-C, et al. A secreted WY-domain-containing protein present in European isolates of the oomycete Plasmopara viticola induces cell death in grapevine and tobacco species. PloS One. 2019;14(7):e0220184. .
  • Maqbool A, Hughes RK, Dagdas YF, et al. Structural basis of host autophagy-related protein 8 (ATG8) binding by the Irish potato famine pathogen effector protein PexRD54. J Biol Chem. 2016;291(38):20270–20282. .
  • Dagdas YF, Belhaj K, Maqbool A, et al. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. Elife. 2016;5:e10856.
  • Ai G, Xia Q, Song T, et al. A Phytophthora sojae CRN effector mediates phosphorylation and degradation of plant aquaporin proteins to suppress host immune signaling. PLoS Pathog. 2021;17(3):e1009388. .
  • Carella P, Evangelisti E, Schornack S. Sticking to it: phytopathogen effector molecules may converge on evolutionarily conserved host targets in green plants. Curr Opin Plant Biol. 2018;44:175.
  • Irieda H, Inoue Y, Mori M, et al. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proceedings of the National Academy of Sciences. 2019;116( 2):496–505.
  • Alfano JR, Charkowski AO, Deng W-L, et al. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proceedings of the national Academy of Sciences. 2000;97( 9):4856–4861.
  • DebRoy S, Thilmony R, Kwack Y-B, et al. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proceedings of the National Academy of Sciences. 2004;101( 26):9927–9932.
  • Badel JL, Shimizu R, Oh H-S, et al. A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol Plant-microbe Interactions. 2006;19(2):99–111.
  • Vossenll H, Robatzek S, Kamoun S, et al. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. 2021.
  • Guo Y, Dupont PY, Mesarich CH, et al. Functional analysis of RXLR effectors from the New Zealand kauri dieback pathogen Phytophthora agathidicida. Mol Plant Pathol. 2020;21(9):1131–1148. .
  • He Q, McLellan H, Boevink PC, et al. All roads lead to susceptibility: the many modes-of-action of fungal and oomycete intracellular effectors. Plant Commun. 2020;1(4):100050.
  • Mukhtar MS, Carvunis A-R, Dreze M, et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. science. 2011;333(6042):596–601. .
  • Boevink PC, Wang X, McLellan H, et al. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease. Nat Commun. 2016;7(1):1–14. .
  • Petre B, Saunders DG, Sklenar J, et al. Candidate effector proteins of the rust pathogen Melampsora larici-populina target diverse plant cell compartments. Mol Plant-Microbe Interact. 2015;28(6):689–700. .
  • Roux KJ, Kim DI, Burke B. BioID: a screen for protein‐protein interactions. Curr Protoc Protein Sci. 2013;74(1):19.23.1–19.23. 14.
  • Miller KE, Kim Y, Huh W-K, et al. Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome-wide interaction studies. J Mol Biol. 2015;427(11):2039–2055.
  • Graciet E, Wellmer F. The plant N-end rule pathway: structure and functions. Trends Plant Sci. 2010;15(8):447–453.
  • Whigham E, Qi S, Mistry D, et al. Broadly Conserved Fungal Effector BEC1019 Suppresses Host Cell Death and Enhances Pathogen Virulence in Powdery Mildew of Barley (Hordeum vulgare L.)(Retracted). Mol Plant-Microbe Interact. 2015;28(9):968–983. .
  • Sang Q, Pajoro A, Sun H, et al. Mutagenesis of a Quintuple Mutant Impaired in Environmental Responses Reveals Roles for CHROMATIN REMODELING4 in the Arabidopsis Floral Transition. Plant Cell. 2020;32(5):1479–1500. .
  • Yang L, McLellan H, Naqvi S, et al. Potato NPH3/RPT2-like protein StNRL1, targeted by a Phytophthora infestans RXLR effector, is a susceptibility factor. Plant Physiol. 2016;171(1):645–657. .
  • Ren Y, Armstrong M, Qi Y, et al. Phytophthora infestans RXLR effectors target parallel steps in an immune signal transduction pathway. Plant Physiol. 2019;180(4):2227–2239. .
  • Vleeshouwers VG, Rietman H, Krenek P, et al. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One. 2008;3(8):e2875. .
  • Pais M, Win J, Yoshida K, et al. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biol. 2013;14(6):1–10. .
  • Rietman H, Bijsterbosch G, Cano LM, et al. Qualitative and quantitative late blight resistance in the potato cultivar Sarpo Mira is determined by the perception of five distinct RXLR effectors. Mol Plant-Microbe Interact. 2012;25(7):910–919. .
  • Yang H, Tao Y, Zheng Z, et al. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics. 2012;13(1):318.
  • Wang W, Pan Q, He F, et al. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J. 2018;1(1):65–74. .
  • Rehmany AP, Gordon A, Rose LE, et al. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell. 2005;17(6):1839–1850. .
  • Champouret N, Bouwmeester K, Rietman H, et al. Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. Mol Plant-Microbe Interact. 2009;22(12):1535–1545. .
  • Oh S-K, Young C, Lee M, et al. In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell. 2009;21(9):2928–2947. .
  • Gilroy EM, Taylor RM, Hein I, et al. CMPG1‐dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol. 2011;190(3):653–666.
  • Vleeshouwers VG, Raffaele S, Vossen JH, et al. Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol. 2011;49(1):507–531. .
  • Cárdenas M, Grajales A, Sierra R, et al. Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genet. 2011;12(1):23. .
  • Chapman S, Stevens LJ, Boevink PC, et al. Detection of the virulent form of AVR3a from Phytophthora infestans following artificial evolution of potato resistance gene R3a. PLoS One. 2014;9(10):e110158. .
  • Giannakopoulou A, Steele JF, Segretin ME, et al. Tomato I2 immune receptor can be engineered to confer partial resistance to the oomycete Phytophthora infestans in addition to the fungus Fusarium oxysporum. Mol Plant-Microbe Interact. 2015;28(12):1316–1329. .
  • Kombrink A, Thomma BP. LysM effectors: secreted proteins supporting fungal life. PLoS Pathog. 2013;9(12):e1003769.
  • Bourras S, McNally KE, Ben-David R, et al. Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. Plant Cell. 2015;27(10):2991–3012.
  • Plissonneau C, Daverdin G, Ollivier B, et al. A game of hide and seek between avirulence genes AvrLm4‐7 and AvrLm3 in Leptosphaeria maculans. New Phytol. 2016;209(4):1613–1624. .
  • van Schie CC, Takken FL. Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol. 2014;52(1):551–581.
  • Thordal-Christensen H. A holistic view on plant effector-triggered immunity presented as an iceberg model. In: Cellular and Molecular Life Sciences. 2020. p. 1–14.
  • Zaidi SS-E-A, Mukhtar MS, Mansoor S. Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol. 2018;36(9):898–906.
  • Gawehns F, Cornelissen BJ, Takken FL. The potential of effector‐target genes in breeding for plant innate immunity. Microb Biotechnol. 2013;6(3):223–229.
  • Sun K, Wolters A-MA, Vossen JH, et al. Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Res. 2016;25(5):731–742. .
  • Cabral A, Stassen JH, Seidl MF, et al. Van den Ackerveken G. Identification of Hyaloperonospora arabidopsidis transcript sequences expressed during infection reveals isolate-specific effectors. PLoS One. 2011;6(5):e19328.
  • Peeters N, Guidot A, Vailleau F, et al. R alstonia solanacearum, a widespread bacterial plant pathogen in the post‐genomic era. Mol Plant Pathol. 2013;14(7):651–662.
  • Deslandes L, Genin S. Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. Curr Opin Plant Biol. 2014;20:110–117.
  • Clarke CR, Studholme DJ, Hayes B, et al. Genome-enabled phylogeographic investigation of the quarantine pathogen Ralstonia solanacearum race 3 biovar 2 and screening for sources of resistance against its core effectors. Phytopathology. 2015;105(5):597–607. .
  • Merda D, Briand M, Bosis E, et al. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol Ecol. 2017;26(21):5939–5952. .
  • Zhang Y, Zhang K, Fang A, et al. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nat Commun. 2014;5(1):1–12.
  • Fang A, Han Y, Zhang N, et al. Identification and characterization of plant cell death–inducing secreted proteins from Ustilaginoidea virens. Mol Plant-Microbe Interact. 2016;29(5):405–416. .
  • Fang A, Gao H, Zhang N, et al. A novel effector gene SCRE2 contributes to full virulence of Ustilaginoidea virens to rice. Front Microbiol. 2019;10:845.
  • Plissonneau C, Hartmann FE, Croll D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 2018;16(1):1–16.
  • Hemetsberger C, Herrberger C, Zechmann B, et al. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog. 2012;8(5):e1002684.
  • Lanver D, Tollot M, Schweizer G, et al. Ustilago maydis effectors and their impact on virulence. Nature Rev Microbiol. 2017;15(7):409. .
  • Schuster M, Schweizer G, Kahmann R. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes. Fungal Genet Biol. 2018;112:21–30.
  • Seitner D, Uhse S, Gallei M, et al. The core effector Cce1 is required for early infection of maize by Ustilago maydis. Mol Plant Pathol. 2018;19(10):2277–2287.
  • Ma L-S, Wang L, Trippel C, et al. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Nat Commun. 2018;9(1):1–15. .
  • Tanaka S, Gollin I, Rössel N, et al. The functionally conserved effector Sta1 is a fungal cell wall protein required for virulence in Ustilago maydis. New Phytol. 2020;227(1):185–199.