2,962
Views
10
CrossRef citations to date
0
Altmetric
Review Article

The two-component signal transduction system and its regulation in Candida albicans

, , , , , & show all
Pages 1884-1899 | Received 18 Feb 2021, Accepted 18 Jun 2021, Published online: 08 Jul 2021

References

  • Fu J, Ding Y, Wei B, et al. Epidemiology of Candida albicans and non-C.albicans of neonatal candidemia at a tertiary care hospital in Western China. BMC Infect Dis. 2017;17(1). DOI:10.1186/s12879-017-2423-8.
  • Nur Y. Epidemiology and risk factors for invasive candidiasis. Therapeutics & Clinical Risk Management. 2014; 95.
  • Dadar M, Tiwari R, Karthik K, et al. Candida albicans-Biology, molecular characterization, pathogenicity, and advances in diagnosis and control-An update. Microb Pathog.
  • Pfaller MA, Diekema DJ, Turnidge JD, et al. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. Open Forum Infect Dis.
  • Quindós G, Marcos-Arias C, San-Millán R, et al. The continuous changes in the aetiology and epidemiology of invasive candidiasis: from familiar Candida albicans to multiresistant Candida auris. Int Microbiol.
  • Xiao G, Liao W, Zhang Y, et al. Ventilator associated pulmonary candida infection in intensive care units in the Meizhou region of China: species distribution and resistance and the risk factors for patient mortality. Chinese Journal of Zoonoses. 2019;35(7):613–619.
  • Chen X, Liao B, Cheng L, et al. The microbial coinfection in COVID-19. Appl Microbiol Biotechnol. 2020;104(18):7777–7785.
  • Chen H, Zhou X, Ren B, et al. The regulation of hyphae growth in Candida albicans. Virulence. 2020;11(1):337–348.
  • Calderone R, Suzuki S, Cannon R. Candida albicans : adherence, signaling and virulence. Med Mycol.
  • Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001;9(7):327–335.
  • Alves R, Barata-Antunes C, Casal M, et al. Adapting to survive: how Candida overcomes host-imposed constraints during human colonization[EB/OL]. (2020-05-01)[5].
  • Nixon BT, Ronson CW, Ausubel FM. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci U S A. 1986;83(20):20.
  • Thomason P, Kay R. Eukaryotic signal transduction via histidine-aspartate phosphorelay. J Cell Sci. 2000;113(Pt 18):3141–3150.
  • Chang C, Stewart RC. The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol. 1998;117(3):723–731.
  • Wurgler-Murphy SM, Saito H. Two-component signal transducers and MAPK cascades. Trends Biochem Sci. 1997;22(5):172–176.
  • Stock AM, Robinson VL, Goudreau PN, et al. Two-Component Signal Transduction. Annu.rev.biochem. 2000;69(1):183–215.
  • Schaller GE. Histidine kinases and the role of two-component systems in plants. Advances in Botanical Research, 2000,32: 109–148.
  • Saito H. Histidine phosphorylation and two-component signaling in Eukaryotic cells.
  • Quan-Sheng Q. Two-component system: a sensor for the perception of osmotic signal in cells. Prog Biochem Biophys. 2000;27(6):593–596.
  • Ninfa AJ, Magasanik B. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci U S A. 1986;83(16):5909–5913.
  • Pioszak AA, Ninfa AJ. Mutations altering the N-terminal receiver domain of NRI (NtrC) that prevent dephosphorylation by the NRII-PII complex in Escherichia coli. J Bacteriol. 2004;186(17):5730–5740.
  • Merrick MJ, Edwards RA. Nitrogen control in bacteria. Microbiol Rev. 1995;59(4):604–622.
  • Appleby JL, Parkinson JS, Bourret RB. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell. 1996;86(6):845–848.
  • Perraud AL, Weiss V, Gross R. Signalling pathways in two-component phosphorelay systems. Trends Microbiol.
  • Furukawa K, Hohmann S. A fungicide-responsive kinase as a tool for synthetic cell fate regulation. Nucleic Acids Res.
  • Salas-Delgado G, Ongay-Larios L, Kawasaki-Watanabe L, et al. The yeasts phosphorelay systems: a comparative view. World J Microbiol Biotechnol.
  • Day AM, Quinn J. Stress-Activated protein kinases in human fungal pathogens. Front Cell Infect Microbiol. 2019;9:261.
  • Ikner A, Shiozaki K. Yeast signalling pathways in oxidative stress response. Mutat Res. 2005;569(1–2):13–27.
  • He Y, Chen Y, Song W, et al. A Pap1-Oxs1 signaling pathway for disulfide stress in Schizosaccharomyces pombe. Nucleic Acids Res. 2017;45(1):106–114.
  • Quinn J, Malakasi P, Smith D, et al. Two-Component mediated peroxide sensing and signal transduction in fission yeast. Antioxid Redox Signal. 2010;15(1):153–165.
  • Rutherford JC, Bahn Y, Van Den Berg B, et al. Nutrient and stress sensing in pathogenic yeasts. Front Microbiol. 2019;10:442.
  • Bahn YS, Kojima K, Cox GM, et al. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell. 2006;17(7):3122–3135.
  • Maliehe M, Ntoi MA, Lahiri S, et al. Environmental factors that contribute to the maintenance of Cryptococcus neoformans pathogenesis. Microorganisms. 2020;8(2):180.
  • Kruppa M, Calderone R. Two-component signal transduction in human fungal pathogens. FEMS Yeast Res. 2006;6(2):149–159.
  • Galagan J, Calvo S, Borkovich K, et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003;422(6934):859–868.
  • Posas F, Saito H. Activation of the yeast Ssk2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 1998;17(5):1385–1394.
  • Alonso-Monge R, Navarro-Garcia F, Roman E, et al. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell. 2003;2(2):351–361.
  • Bernhardt J, Herman D, Sheridan M, et al. Adherence and invasion studies of Candida albicans Strains, using in vitro models of Esophageal Candidiasis. J Infect Dis.
  • Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 2002;66(2):300–372.
  • Calera JA, Zhao XJ, Calderone R. Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun. 2000;68(2):518–525.
  • Chauhan N, Inglis D, Roman E, et al. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot Cell. 2003;2(5):1018–1024.
  • Li D, Bernhardt J, Calderone R. Temporal expression of the Candida albicans genes CHK1 and CSSK1, adherence, and morphogenesis in a model of reconstituted human esophageal epithelial candidiasis. Infect Immun. 2002;70(3):1558–1565.
  • Nagahashi S, Mio T, Ono N, et al. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology (Reading). 1998;144(Pt 2):425–432.
  • Yamada-Okabe T, Mio T, Ono N, et al. Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol. 1999;181(23):7243–7247.
  • Li S, Ault A, Malone CL, et al. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p]. EMBO J. 1998;17(23):6952–6962.
  • Morgan BA, Bouquin N, Johnston LH. Two-component signal-transduction systems in budding yeast MAP a different pathway?. Trends Cell Biol. 1995;5(12):453–457.
  • San JC, Monge RA, Pérez-Díaz R, et al. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol. 1996;178(19):5850–5852.
  • Arana DM, Nombela C, Alonso-Monge R, et al. The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology. 2005;151(4):1033–1049.
  • Day A, Smith D, Ikeh M, et al. Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation. PLoS Pathog. 2017;13(1):e1006131.
  • Shor E, Chauhan N. A case for two-component signaling systems as antifungal drug targets. PLoS Pathog. 2015;11(2):e1004632.
  • Mavrianos J, Berkow EL, Desai C, et al. Mitochondrial Two-Component Signaling Systems in Candida albicans. Eukaryot Cell. 2013;12(6):913–922.
  • Calera J, Calderone R. Identification of a putative response regulator two-component phosphorelay gene (CaSSK1) from Candida albicans. Yeast. 1999;15(12):1243–1254.
  • Singh P, Chauhan N, Ghosh A, et al. SKN7 of Candida albicans: mutant Construction and Phenotype Analysis. Infect Immun. 2004;72(4):2390–2394.
  • Salas-Delgado G, Ongay-Larios L, Kawasaki-Watanabe L, et al. The yeasts phosphorelay systems: a comparative view. World J Microbiol Biotechnol. 2017;33(6):111.
  • Alex L, Korch C, Selitrennikoff C, et al. COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci U S A. 1998;95(12):7069–7073.
  • Srikantha T, Tsai L, Daniels K, et al. The two-component hybrid kinase regulator CaNIKl of Candida albicans. Microbiology. 1998;144(10):2715–2729.
  • Catlett NL, Yoder OC, Turgeon BG. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell. 2003;2(6):1151–1161.
  • Fillinger S, Ajouz S, Nicot PC, et al. Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PLoS One. 2012;7(8):e42520.
  • John E, Lopez-Ruiz F, Rybak K, et al. Dissecting the role of histidine kinase and HOG1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat. Microbiology (Reading). 2016;162(6):1023–1036.
  • Cho Y, Kim KH, La Rota M, et al. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol Microbiol. 2009;72(6):1316–1333.
  • Kruppa M, Jabra-Rizk MA, Meiller TF, et al. The histidine kinases of Candida albicans: regulation of cell wall mannan biosynthesis. FEMS Yeast Res.
  • Avenot H, Simoneau P, Iacomi-Vasilescu B, et al. Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance. Curr Genet. 2005;47(4):234–243.
  • El-Mowafy M, Bahgat M, Bilitewski U. Deletion of the HAMP domains from the histidine kinase CaNik1p of Candida albicans or treatment with fungicides activates the MAP kinase Hog1p in S. cerevisiae transformants. BMC Microbiol. 2013;13(1):209.
  • Calera JA, Choi GH, Calderone RA. Identification of a putative histidine kinase two-component phosphorelay gene (CaHK1) in Candida albicans. Yeast. 1998;14(7):665–674.
  • Calera J, Herman D, Calderone R. Identification of YPD1, a gene of Candida albicans which encodes a two-component phosphohistidine intermediate protein. Yeast. 2000;16(11):1053–1059.
  • Janiak-SPens F, Sparling D, West A. Novel role for an HPt domain in stabilizing the phosphorylated state of a response regulator domain. J Bacteriol. 2001;182(23):6673–6678.
  • Mavrianos J, Desai C, Chauhan N. Two-Component Histidine Phosphotransfer protein Ypd1 is not essential for viability in Candida albicans. Eukaryot Cell. 2014;13(4):452–460.
  • Ketela T, Brown JL, Stewart RC, et al. Yeast Skn7p activity is modulated by the Sln1p-Ypd1p osmosensor and contributes to regulation of the HOG pathway. Molecular & General Genetics Mgg. 1998;259(4):372–378.
  • Santos JL, Shiozaki K. Fungal Histidine Kinases. Sci Stke.
  • Fassler JS, West AH. Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. Eukaryot Cell. 2013;12(8):1052–1060.
  • Lee JW, Ko YJ, Kim SY, et al. Multiple roles of Ypd1 phosphotransfer protein in viability, stress response, and virulence factor regulation in Cryptococcus neoformans. Eukaryot Cell. 2011;10(7):998–1002.
  • Porter SW, West AH. A common docking site for response regulators on the yeast phosphorelay protein Ypd1. Biochim Biophys Acta. 2005;1748(2):138–145.
  • Menon V, De Bernardis F, Calderone R, et al. Transcriptional profiling of the Candida albicans Ssk1p receiver domain point mutants and their virulence. FEMS Yeast Res.
  • Du C, Calderone R, Richert J, et al. Deletion of the SSK1 response regulator gene in Candida albicans contributes to enhanced killing by human polymorphonuclear neutrophils. Infect Immun. 2005;73(2):865–871.
  • Charizanis C, Juhnke H, Krems B, et al. The oxidative stress response via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae. Mol Gen Genet. 1999;261(4–5):740–752.
  • Lee J, Godon C, Lagniel G, et al. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem. 1999;274(23):16040–16046.
  • Raitt D, Johnson A, Erkine A, et al. The Skn7 response regulator of Saccharomyces cerevisiae Interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative Stress. Mol Biol Cell. 2000;11(7):2335–2347.
  • Murielle C, Audrey N, Vitor C, et al. A versatile overexpression strategy in the pathogenic yeast Candida albicans: identification of regulators of morphogenesis and fitness. Plos One. 2012;7(9):e45912.
  • Homann O, Dea J, Noble S. et al. A phenotypic profile of the Candida albicans regulatory network. PLoS Genet. 12. 2009; (5)e1000783. doi: 10.1371/journal.pgen.1000783.
  • Basso V, Znaidi S, Lagage V, et al. The two-component response regulator Skn7 belongs to a network of transcription factors regulating morphogenesis in Candida albicans and independently limits morphogenesis-induced ROS accumulation. Mol Microbiol. 2017;106(1):157–182.
  • Butler G, Rasmussen M, Lin M, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459(7247):657–662.
  • Bruce CR, Smith DA, Rodgers D, et al. Identification of a novel response regulator, Crr1, that is required for hydrogen peroxide resistance in Candida albicans. Plos One. 2011;6(12):e27979.
  • Desai C, Mavrianos J, Chauhan N. Candida albicans SRR1, a Putative Two-Component response regulator gene, is required for stress adaptation, morphogenesis, and virulence. Eukaryot Cell. 2011;10(10):1370–1374.
  • Chaffin WL. Candida albicans cell wall proteins. Microbiol Mol Biol Rev. 2008;72(3):495–544.
  • Gow N, Latge JP, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr. 2017;5(3). DOI:10.1128/microbiolspec.FUNK-0035-2016
  • Erwig LP, Gow NA. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol. 2016;14(3):163–176.
  • Calera JA, Calderone R. Histidine kinase, two-component signal transduction proteins of Candida albicans and the pathogenesis of candidosis. Mycoses. 1999;42 Suppl 2:49-53.
  • Kruppa M, Calderone R. Two-component signal transduction in human fungal pathogens. FEMS Yeast Res.
  • Calera J, Calderone R. Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology (Reading). 1999;145(Pt 6):1431–1442.
  • Kruppa M, Goins T, Cutler JE, et al. The role of the Candida albicans histidine kinase (CHK1) gene in the regulation of cell wall mannan and glucan biosynthesis. FEMS Yeast Res. 2003;3(3):289–299.
  • Davis D, Wilson RB, Mitchell AP. RIM101-dependent and-independent pathways govern pH responses in Candida albicans. Mol Cell Biol.
  • Fonzi WA. PHR1 and PHR2 of Candida albicans Encode Putative Glycosidases required for proper Cross-Linking of β-1,3- and β-1,6-Glucans. J Bacteriol. 1999;181(22):7070–7079.
  • Cleary JA, Kelly GE, Husband AJ. The effect of molecular weight and β-1,6-linkages on priming of macrophage function in mice by (1,3)-β-D-glucan. Immunol Cell Biol. 1999;77(5):395–403.
  • Wright CD, Bowie JU, Gray GR, et al. Candidacidal activity of myeloperoxidase: mechanisms of inhibitory influence of soluble cell wall mannan. Infect Immun. 1983;42(1):76–80.
  • Hoyer LL. The ALS gene family of Candida albicans. Trends Microbiol. 2001;9(4):176–180.
  • Li D, Gurkovska V, Sheridan M, et al. Studies on the regulation of the two-component histidine kinase gene CHK1 in Candida albicans using the heterologous lacZ reporter gene. Microbiology. 2004;150(Pt 10):3305–3313.
  • Nasution AI. Virulence Factor and Pathogenicity of Candida albicans in Oral Candidiasis. World Journal of Dentistry. 2013;4(4):267–271.
  • Lengeler KB, Davidson RC, D’Souza C, et al. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev.
  • Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev. 2011;75:213–267.
  • Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011;9(10):737–748.
  • Ernst JF. Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology(Reading). 2000;146 (Pt 8):1763-1774.
  • Köhler JR, Fink GR. Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A. 1996;93(23):13223–13228.
  • Leberer E, Harcus D, Broadbent ID, et al. Signal transduction through Homologs of the Ste20p and Ste7p Protein Kinases can Trigger Hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A. 1996;93(23):13217–13222.
  • Liu H, Kohler J, Fink G. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science. 1994;266(5191):1723–1726.
  • Csank C, Makris C, Meloche S, et al. Derepressed Hyphal Growth and Reduced Virulence in a VH1 Family-related Protein Phosphatase Mutant of the Human Pathogen Candida albicans. Mol Biol Cell. 1998;8(12):2539–2551.
  • Sonneborn A, Bockmühl DP, Gerads M, et al. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol Microbiol.
  • Zhou Y, Cheng L, Liao B, et al. Candida albicans CHK1 gene from two-component system is essential for its pathogenicity in oral candidiasis. Appl Microbiol Biotechnol. 2021;105(6):2485–2496.
  • Cao C, Wu M, Bing J, et al. Global regulatory roles of the cAMP/PKA pathway revealed by phenotypic, transcriptomic and phosphoproteomic analyses in a null mutant of the PKA catalytic subunit in Candida albicans. Mol Microbiol. 2017;105(1):46–64.
  • Schröter C, Hipler U, Wilmer A, et al. Generation of reactive oxygen species by Candida albicans in relation to morphogenesis. Arch Dermatol Res. 2000;292(5):260–264.
  • Selitrennikoff CP, Alex L, Miller TK, et al. COS-1, a putative two-component histidine kinase of Candida albicans, is an in vivo virulence factor. Med Mycol. 2001;39(1):69–74.
  • Cheetham J, MacCallum DM, Doris KS, et al. MAPKKK-independent regulation of the Hog1 stress-activated protein kinase in Candida albicans. J Biol Chem. 2011;286(49):42002–42016.
  • Black CA, Eyers FM, Russell A, et al. Acute neutropenia decreases inflammation associated with murine vaginal candidiasis but has no effect on the course of infection. Infect Immun. 1998;66(3):1273–1275.
  • Calera JA, Zhao XJ, De Bernardis F, et al. Avirulence of Candida albicans CaHK1 Mutants in a murine model of hematogenously disseminated Candidiasis. Infect Immun. 1999;67(8):4280–4284.
  • Cottier F, Hall RA. Face/Off: the Interchangeable Side of Candida Albicans. Front Cell Infect Microbiol. 2019;9:471.
  • De Bernardis F, Boccanera M, Adriani D, et al. Intravaginal and Intranasal Immunizations are equally effective in Inducing vaginal antibodies and conferring protection against vaginal Candidiasis. Infect Immun. 2002;70(5):2725–2729.
  • Torosantucci A, Chiani P, De Bernardis F, et al. Deletion of the Two-Component Histidine Kinase Gene (CHK1) of Candida albicans contributes to enhanced growth inhibition and killing by human neutrophils in Vitro. Infect Immun. 2002;70(2):985–987.
  • Fidel P, Luo W, Steele C, et al. Analysis of vaginal cell populations during experimental vaginal candidiasis. Infect Immun. 1999;67(6):3135–3140.
  • Maeda T, S M W-M, Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994;369(6477):242–245.
  • Posas F, Wurgler-Murphy SM, Maeda T, et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component”Osmosensor. Cell. 1996;86(6):865–875.
  • Maeda T, Takekawa M, Saito H. Activation of yeast Pbs2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science.
  • Reiser V, Raitt DC, Saito H. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol. 2003;161(6):1035–1040.
  • Singh KK. The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radic Biol Med. 2000;29(10):1043–1050.
  • Cheetham J, Smith DA, Da SDA, et al. A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Mol Biol Cell. 2007;18(11):4603–4614.
  • Takayama T, Yamamoto K, Saito H, et al. Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae. PloS One. 2019;14(1):e211380.
  • Román E, Nombela C, Pla J. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal Pathogen Candida albicans. Mol Cell Biol. 2005;25(23):10611–10627.
  • Bahn Y, Xue C, Idnurm A, et al. Sensing the environment: lessons from fungi. Nat Rev Microbiol. 2007;5(1):57–69.
  • Nikolaou E, Agrafioti I, Stumpf M, et al. Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol. 2009;9:44.
  • Janiak-Spens F, Sparling JM, Gurfinkel M, et al. Differential stabilities of phosphorylated response regulator domains reflect functional roles of the yeast osmoregulatory Sln1 and Ssk1 proteins. J Bacteriol.
  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55(1):165.
  • Kruppa M, Krom BP, Chauhan N, et al. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot Cell. 2004;3(4):1062–1065.
  • Calderone, RA. Candida and candidiasis. Washington, DC: ASM; 2002.
  • Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67(7):2982–2992.
  • Chen H, Fujita M, Feng Q, et al. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A.
  • Alem MA, Oteef MD, Flowers TH, et al. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell. 2006;5(10):1770–1779.
  • Ramage G, Saville SP, Wickes BL, et al. Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule. Appl Environ Microbiol. 2002;68(11):5459.
  • Cao YY, Cao YB, Xu Z, et al. cDNA microarray analysis of differential Gene Expression in Candida albicans Biofilm Exposed to Farnesol. Antimicrob Agents Chemother. 2005;49(2):584–589.
  • Kai C, Ren-yi L, Lan Y. Research progress of pathogenic factors and antifungal drugs of Candida albicans. Chinese Journal of Mycology. 2017;12(3):180–183.
  • Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17(12):e383.
  • Yuan Z , Chen A J , Shen Y W, et al. Advances in clinical application of triazole antifungal agents. Pharmaceutical and Clinical Research. 2018;26(2):125–129.
  • Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69(1):71–92.
  • Soll DR, Daniels KJ. Plasticity of Candida albicans Biofilms. Microbiol Mol Biol Rev. 2016;80(3):565–595.
  • Taff HT, Mitchell KF, Edward JA, et al. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013;8(10):1325–1337.
  • Barrett JF, Hoch JA. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob Agents Chemother. 1998;42(7):1529–1536.
  • Koretke KK, Lupas AN, Warren PV, et al. Evolution of two-component signal transduction. Mol Biol Evol.
  • Venter JC, Adams MD, Myers EW. The sequence of the human genome. Science. 2001;291(5507):1304–1351.
  • Wolanin PM, Thomason PA, Stock JB. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol. 2002;3(10):s3011–s3013.
  • Shivarathri R, Jenull S, Stoiber A, et al. The Two-Component response regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 control antifungal drug resistance and cell wall architecture of Candida auris. mSphere. 2020;5(5). doi:10.1128/mSphere.00973-20.
  • Chauhan N, Kruppa M, Calderone R. The Ssk1p response regulator and Chk1p histidine kinase mutants of Candida albicans are hypersensitive to fluconazole and voriconazole. Antimicrob Agents Chemother.
  • Chen W. Study on the activity of bicomponent signal transduction system inhibitor against Candida albicans in vitro[D]. Fujian Medical University, 2011.