2,299
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Role of intestinal extracellular matrix-related signaling in porcine epidemic diarrhea virus infection

, , , &
Pages 2352-2365 | Received 14 Apr 2021, Accepted 19 Aug 2021, Published online: 13 Sep 2021

References

  • Jung K, Saif LJ, Wang Q. Porcine epidemic diarrhea virus (PEDV): an update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 2020;286:198045.
  • Jung K, Saif LJ. Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet J. 2015;204:134–143.
  • Yu QH, Yang Q. Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biol Int. 2009;33:78–82.
  • VanDussen KL, Carulli AJ, Keeley TM, et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development. 2012;139:488–497.
  • Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–1219.
  • Yue B. Biology of the extracellular matrix: an overview. J Glaucoma. 2014;23:S20–3.
  • Tomlin H, Piccinini AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology. 2018;155:186–201.
  • He Y-W, Li H, Zhang J, et al. The extracellular matrix protein mindin is a pattern-recognition molecule for microbial pathogens. Nat Immunol. 2004;5:88–97.
  • Gaudet AD, Popovich PG. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp Neurol. 2014;258:24–34.
  • Papageorgiou AP, Heymans S. Interactions between the extracellular matrix and inflammation during viral myocarditis. Immunobiology. 2012;217:503–510.
  • Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–4200.
  • Orian-Rousseau V. CD44 acts as a signaling platform controlling tumor progression and metastasis. Front Immunol. 2015;6:154.
  • Morath I, Hartmann TN, Orian-Rousseau V. CD44: more than a mere stem cell marker. Int J Biochem Biotechnol. 2016;81:166–173.
  • Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801.
  • Collen D. The plasminogen (fibrinolytic) system. Hrombosis Haemostasis. 1999;82:259–270.
  • Draxler DF, Medcalf RL. The fibrinolytic system-more than fibrinolysis? Transfus Med Rev. 2015;29:102–109.
  • Ghosh AK, Vaughan DE. PAI-1 in tissue fibrosis. J Cell Physiol. 2012;227:493–507.
  • Dittmann M, Hoffmann HH, Scull MA, et al. A serpin shapes the extracellular environment to prevent influenza A virus maturation. Cell. 2015;160:631–643.
  • Li Y, Wu Q, Huang L, et al. An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine. Nat Commun. 2018;9:3811.
  • Li Y, Wu Q, Jin Y, et al. Antiviral activity of interleukin-11 as a response to porcine epidemic diarrhea virus infection. Vet Res. 2019;50:111.
  • Wu G, Knabe DA, Yan W, et al. Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol. 1995;268:R334–42.
  • Booth C, O’Shea JA. Isolation and culture of intestinal epithelial cells. Culture Epithelial Cells. 2002;2:303–335.
  • Koyama S, Ishii KJ, Coban C, et al. Innate immune response to viral infection. Cytokine. 2008;43:336–341.
  • Sartor RB, Hoentjen F. Proinflammatory cytokines and signaling pathways in intestinal innate immune cells. Mucosal Immunol. 2005;30:681–701.
  • Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nat Immunol. 2011;12:695–708.
  • Deng L, Zeng Q, Wang M, et al. Suppression of NF-κB activity: a viral immune evasion mechanism. Viruses. 2018;10:409.
  • Zong QF, Huang YJ, Wu LS, et al. Effects of porcine epidemic diarrhea virus infection on tight junction protein gene expression and morphology of the intestinal mucosa in pigs. Pol J Vet Sci. 2019;22:345–353.
  • Swinehart IT, Badylak SF. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn. 2016;245:351–360.
  • Hammerschmidt S, Rohde M, Preer KT. Extracellular matrix interactions with gram-positive pathogens. Microbiol Spectr. 2019;7(2):7.
  • Singh B, Fleury C, Jalalvand F, et al. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev. 2012;36:1122–1180.
  • Andersson E, Rydengård V, Sonesson A, et al. Antimicrobial activities of heparin‐binding peptides. Eur J Biochem. 2004;271:1219–1226.
  • Fouda GG, Jaeger FH, Amos JD, et al. Tenascin-C is an innate broad-spectrum, HIV-1–neutralizing protein in breast milk. Proc Nat Acad Sci. 2013;110:18220–18225.
  • Morwood SR, Nicholson LB. Modulation of the immune response by extracellular matrix proteins. Arch Immunol Ther Exp (Warsz). 2016;54:367–374.
  • Black KE, Collins SL, Hagan RS, et al. Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway. J Inflam. 2013;10:1–9.
  • Collins SL, Black KE, Chan-Li Y, et al. Hyaluronan fragments promote inflammation by down-regulating the anti-inflammatory A2a receptor. Am J Respir Cell Mol Biol. 2011;45:675–683.
  • Marchant DJ, Bellac CL, Moraes TJ, et al. A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat Med. 2014;20:493–502.
  • Soria-Valles C, Gutiérrez-Fernández A, Osorio FG, et al. MMP-25 Metalloprotease Regulates Innate Immune Response through NF-κB Signaling. J Iimmunol. 2016;197:296–302.
  • Orian-Rousseau V, Sleeman J. CD44 is a multidomain signaling platform that integrates extracellular matrix cues with growth factor and cytokine signals. Adv Cancer Res. 2014;123:231–254.
  • Heldin P, Kolliopoulos C, Lin CY, et al. Involvement of hyaluronan and CD44 in cancer and viral infections. Cell Signal. 2020;65:109427.
  • Murakami T, Kim J, Li Y, et al. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat Commun. 2018;9:1–14.
  • Iqbal J, Sarkar-Dutta M, McRae S, et al. Osteopontin regulates hepatitis C virus (HCV) replication and assembly by interacting with hcv proteins and lipid droplets and by binding to receptors αVβ3 and CD44. J Virol. 2018;92:e02116–17.
  • Puré E, Cuff CA. A crucial role for CD44 in inflammation. Trends Mol Med. 2001;7:213–221.
  • Wang X, Mbondji-Wonje C, Zhao J, et al. IL-1β and IL-18 inhibition of HIV-1 replication in Jurkat cells and PBMCs. Biochem Biophys Res Commun. 2016;473:926–930.
  • Xue M, Zhao J, Ying L, et al. IL-22 suppresses the infection of porcine enteric coronaviruses and rotavirus by activating STAT3 signal pathway. Antiviral Res. 2017;142:68–75.
  • Bouezzedine F, Fardel O, Gripon P. Interleukin 6 inhibits HBV entry through NTCP down regulation. Virology. 2015;481:34–42.
  • Kuo TM, Hu CP, Chen YL, et al. HBV replication is significantly reduced by IL-6. J Biomed Sci. 2009;16:41.
  • Nimmerjahn F, Dudziak D, Dirmeier U, et al. Active NF-κB signalling is a prerequisite for influenza virus infection. J Gen Virol. 2004;85:2347–2356.
  • Haas F, Yamauchi K, Murat M, et al. Activation of NF-κB via endosomal Toll-like receptor 7 (TLR7) or TLR9 suppresses murine herpesvirus 68 reactivation. J Virol. 2014;88:10002–10012.
  • Ding Z, An K, Xie LL, et al. Transmissible gastroenteritis virus infection induces NF-κB activation through RLR-mediated signaling. Virology. 2017;507:170–178.
  • Cao L, Gao Y, Ren X, et al. Porcine epidemic diarrhea virus infection induces NF-κB activation through the TLR2, TLR3 and TLR9 pathways in porcine intestinal epithelial cells. J Gen Virol. 2015;96:1757–1767.
  • Wang Y, Sun A, Sun Y, et al. Porcine transmissible gastroenteritis virus inhibits NF-κB activity via nonstructural protein 3 to evade host immune system. Virol J. 2019;16:1–13.
  • Yang CH, Li HC, Ku TS, et al. Hepatitis C virus down-regulates SERPINE1/PAI-1 expression to facilitate its replication. J Gen Virol. 2017;98:2274–2286.