1,994
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Set1-mediated H3K4 methylation is required for Candida albicans virulence by regulating intracellular level of reactive oxygen species

, , , ORCID Icon & ORCID Icon
Pages 2648-2658 | Received 14 May 2021, Accepted 10 Sep 2021, Published online: 26 Oct 2021

References

  • Gow NAR, Van DV, Brown AJP, et al. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol. 2011;10(2):112.
  • Calderone R, Fonzi W. Virulence factors of Candida albicans. Trends Microbiol. 2001;9(7):327–335.
  • Kumamoto CA, Vinces MD. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol. 2005;7(11):1546–1554.
  • Soll DR. Why does Candida albicans switch? FEMS Yeast Res. 2009;9(7):973–989.
  • Tsui C, Kong EF, Jabra-Rizk MA. Pathogenesis of Candida albicans biofilm. Pathog Dis. 2016;74(4):ftw018.
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–128.
  • Naglik JR, Challacombe SJ, Hube B. Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis. Microbiol Mol Biol Rev. 2003;67(3):400–428.
  • Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15(2):96–108.
  • Hube B. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol. 2004;7(4):336–341.
  • Biswas S, Van Dijck P, Datta A. Environmental Sensing and Signal Transduction Pathways Regulating Morphopathogenic Determinants of Candida albicans. Microbiol Mol Biol Rev. 2007;71:348.
  • Berger SL. An embarrassment of niches: the many covalent modifications of histones in transcriptional regulation. Oncogene. 2001;20(24):3007.
  • Li B, Carey M, Workman JL. The Role of Chromatin during Transcription. Cell. 2007;128(4):707–719.
  • Bernstein BE, Humphrey EL, Erlich RL, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A. 2002;99(13):8695.
  • Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature. 2002;419(6905):407–411.
  • Raman SB, Hong Nguyen M, Zhang Z, et al. Candida albicans SET1 encodes a histone 3 lysine 4 methyltransferase that contributes to the pathogenesis of invasive candidiasis. Mol Microbiol. 2006;60(3):697–709.
  • Dallery J, Adelin É, Le Goff G, et al. H3K4 trimethylation by CclA regulates pathogenicity and the production of three families of terpenoid secondary metabolites in Colletotrichum higginsianum. Mol Plant Pathol. 2019;20(6):831–842.
  • Gu Q, Tahir AH, Zhang H, et al. Involvement of FvSet1 in Fumonisin B1 Biosynthesis, Vegetative Growth, Fungal Virulence, and Environmental Stress Responses in Fusarium verticillioides. Toxins (Basel). 2017;9(2):43.
  • Janevska S, Güldener U, Sulyok M, et al. Set1 and Kdm5 are antagonists for H3K4 methylation and regulators of the major conidiation-specific transcription factor gene ABA1 in Fusarium fujikuroi. Environ Microbiol. 2018;20(9):3343–3362.
  • Lai Y, Cao X, Chen J, et al. Coordinated regulation of infection-related morphogenesis by the KMT2-Cre1-Hyd4 regulatory pathway to facilitate fungal infection. Sci Adv. 2020;6(13):eaaz1659–eaaz1659.
  • Liu Y, Zhang M, Xie R, et al. The Methyltransferase AflSet1 Is Involved in Fungal Morphogenesis, AFB1 Biosynthesis, and Virulence of Aspergillus flavus. Front Microbiol. 2020;11:234.
  • Liu Y, Liu N, Yin Y, et al. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum. Environ Microbiol. 2015;17(11):4615–4630.
  • Pham KTM, Inoue Y, Vu BV, et al. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) Regulates Global Gene Expression during Infection-Related Morphogenesis. PLoS Genet. 2015;11(7):e1005385.
  • Kim J, Lee J. Rapid method for chromatin immunoprecipitation (ChIP) assay in a dimorphic fungus, Candida albicans. J Microbiol. 2020;58(1):11–16.
  • Ng HH, Robert F, Young RA, et al. Targeted Recruitment of Set1 Histone Methylase by Elongating Pol II Provides a Localized Mark and Memory of Recent Transcriptional Activity. Mol Cell. 2003;11(3):709–719.
  • Howe FS, Fischl H, Murray SC, et al. Is H3K4me3 instructive for transcription activation? Bioessays. 2017;39(1):e201600095.
  • Murray SC, Lorenz P, Howe FS, et al. H3K4me3 is neither instructive for, nor informed by, transcription. bioRxiv. 2019;709014. 10.1101/709014
  • Kumar A, Agarwal S, Heyman JA, et al. Subcellular localization of the yeast proteome. Genes Dev. 2002;16(6):707–719.
  • Cadenas E. Mitochondrial free radical production and cell signaling. Mol Aspects Med. 2004;25(1–2):17–26.
  • Calderone R, Li D, Traven A. System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Res. 2015;15(4). 10.1093/femsyr/fov027
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(2):335–344.
  • Dietmeier K, Hönlinger A, Bömer U, et al. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature. 1997;388(6638):195–200.
  • Jan PS, Esser K, Pratje E, et al. Som1, a third component of the yeast mitochondrial inner membrane peptidase complex that contains Imp1 and Imp2. Mol. Gen. Genet. 2000;263(3):483–491
  • Liang H, Luo W, Green N, et al. Cargo Sequences Are Important for Som1p-dependent Signal Peptide Cleavage in Yeast Mitochondria. J Biol Chem. 2004;279(38):39396–39400.
  • Mokranjac D, Neupert W. Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. Biochim. Biophys. Acta Mol. Cell Res. 2009;1793(1):33–41
  • Aguilar-Lopez J, Laboy R, Jaimes-Miranda F, et al. Slm35 links mitochondrial stress response and longevity through TOR signaling pathway. Aging (Albany NY). 2016;8(12):3255–3271.
  • Blankenship JR, Fanning S, Hamaker JJ, et al. An Extensive Circuitry for Cell Wall Regulation in Candida albicans. PLOS Pathog. 2010;6(2):e1000752.
  • Melber A, Na U, Vashisht A, et al. Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. eLife. 2016;5:e15991.
  • Martin CJ, Peters KN, Behar SM. Macrophages clean up: efferocytosis and microbial control. Curr Opin Microbiol. 2014;17:17–23.
  • Dantas AD, Lee KK, Raziunaite I, et al. Cell biology of Candida albicans–host interactions. Curr Opin Microbiol. 2016;34:111–118.
  • Dantas AD, Day A, Ikeh M, et al. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans. Biomolecules. 2015;5:
  • Hwang C, Rhie G, Oh J, et al. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology. 2002;148(11):3705–3713.
  • Miramón P, Dunker C, Kasper L, et al. A family of glutathione peroxidases contributes to oxidative stress resistance in Candida albicans. Med Mycol. 2014;52(3):223–239.
  • Nakagawa Y, Watanabe KK, Kiyomi, Morita Y, et al. The Expression of the Pathogenic Yeast Candida albicans Catalase Gene in Response to Hydrogen Peroxide. Microbiol Immunol. 1999;43(7):645–651.
  • Rhie G, Hwang C, Brady M, et al. Manganese-containing superoxide dismutase and its gene from Candida albicans. Biochim. Biophys. Acta, Gen. Subj. 1999;1426(3):409–419
  • Scandalios JG. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res. 2005;38(7):995–1014.
  • Casadevall A, Pirofski L. Accidental Virulence, Cryptic Pathogenesis, Martians, Lost Hosts, and the Pathogenicity of Environmental Microbes. Eukaryot Cell. 2007;6(12):2169.
  • Martín GM, King DA, Green EM, et al. Set5 and Set1 cooperate to repress gene expression at telomeres and retrotransposons. Epigenetics. 2014;9(4):513–522.
  • Ramakrishnan S, Pokhrel S, Palani S, et al. Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription. Nat Commun. 2016;7(1):11949.