2,579
Views
5
CrossRef citations to date
0
Altmetric
Research paper

M. tuberculosis CRISPR/Cas proteins are secreted virulence factors that trigger cellular immune responses

, , , , , , , , , , , & ORCID Icon show all
Pages 3032-3044 | Received 10 Mar 2021, Accepted 10 Nov 2021, Published online: 09 Dec 2021

References

  • Behar SM, Divangahi M, Remold HG. Evasion of innate immunity by mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol. 2010;8(9):668–674.
  • WHO. 2020. Global tuberculosis report 2020. World Health Organization, Geneva, Switzerland.
  • van Crevel R, Ottenhoff TH, van der Meer JW. Innate immunity to mycobacterium tuberculosis. Clin Microbiol Rev. 2002;15(2):294–309.
  • Bussi C, Gutierrez MG. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol Rev. 2019;43(4):341–361.
  • Keane J, Balcewicz-Sablinska MK, Remold HG, et al. Infection by mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun. 1997;65(1):298–304.
  • Amaral EP, Lasunskaia EB, D’Império-Lima MR. Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect. 2016;18(1):11–20.
  • Hossain MM, Norazmi MN. Pattern recognition receptors and cytokines in mycobacterium tuberculosis infection–the double-edged sword? Biomed Res Int. 2013;2013:179174.
  • Derrick SC, Morris SL. The ESAT6 protein of mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression. Cell Microbiol. 2007;9(6):1547–1555.
  • Sanchez A, Espinosa P, Garcia T, et al. The 19 kDa mycobacterium tuberculosis lipoprotein (LpqH) induces macrophage apoptosis through extrinsic and intrinsic pathways: a role for the mitochondrial apoptosis-inducing factor. Clin Dev Immunol. 2012;2012:950503.
  • Deng W, Yang W, Zeng J, et al. Mycobacterium tuberculosis PPE32 promotes cytokines production and host cell apoptosis through caspase cascade accompanying with enhanced ER stress response. Oncotarget. 2016;7(41):67347–67359.
  • Wei W, Zhang S, Fleming J, et al. Mycobacterium tuberculosis type III-A CRISPR/Cas system crRNA and its maturation have atypical features. FASEB J. 2019;33(1):1496–1509.
  • Kelkar DS, Kumar D, Kumar P, et al. Proteogenomic analysis of mycobacterium tuberculosis by high resolution mass spectrometry. Mol Cell Proteomics. 2011;10(12):M111.011627.
  • Tucci P, Portela M, Chetto CR, et al. Integrative proteomic and glycoproteomic profiling of mycobacterium tuberculosis culture filtrate. PLoS One. 2020;15(3):e0221837.
  • Westra ER, Buckling A, Fineran PC. CRISPR-cas systems: beyond adaptive immunity. Nat Rev Microbiol. 2014;12(5):317–326.
  • Barrangou R. The roles of CRISPR-cas systems in adaptive immunity and beyond. Curr Opin Immunol. 2015;32:36–41.
  • Cui L, Wang X, Huang D, et al. CRISPR-cas3 of salmonella upregulates bacterial biofilm formation and virulence to host cells by targeting quorum-sensing systems. Pathogens. 2020;9(1):53.
  • Zhou CM, Wu Q, Wang B, et al. Calcium-responsive kinase LadS modulates type I-F CRISPR-Cas adaptive immunity. Biochem Biophys Res Commun. 2021;546:155–161.
  • Sampson TR, Saroj SD, Llewellyn AC, et al. A CRISPR/cas system mediates bacterial innate immune evasion and virulence. Nature. 2013;497(7448):254–257.
  • Green AM, Difazio R, Flynn JL. IFN-γ from CD4 T cells is essential for host survival and enhances cd8 t cell function during mycobacterium tuberculosis infection. J Immunol. 2013;190(1):270–277.
  • Mehaffy C, Belisle JT, Dobos KM. Mycobacteria and their sweet proteins: an overview of protein glycosylation and lipoglycosylation in M. tuberculosis. Tuberculosis (Edinb). 2019;115:1–13.
  • Gupta UD, Katoch VM. Animal models of tuberculosis. Tuberculosis (Edinb). 2005;85(5–6):277–293.
  • Urdahl KB, Shafiani S, Ernst JD. Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol. 2011;4(3):288–293.
  • Wang J, Li BX, Ge PP, et al. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat Immunol. 2015;16(3):237–245.
  • Zhang H, Ouyang H, Wang D, et al. Mycobacterium tuberculosis Rv2185c contributes to nuclear factor-kappaB activation. Mol Immunol. 2015;66(2):147–153.
  • Tracey L, Pérez-Rosado A, Artiga MJ, et al. Expression of the NF-kappaB targets BCL2 and BIRC5/survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively. J Pathol. 2005;206(2):123–134.
  • Chande AG, Siddiqui Z, Midha MK, et al. Selective enrichment of mycobacterial proteins from infected host macrophages. Sci Rep. 2015;5(1):13430.
  • Mehra A, Philips JA. Analysis of mycobacterial protein secretion. Biol Protoc. 2014;4(12):e1159.
  • Pathak SK, Basu S, Basu KK, et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol. 2007;8(6):610–618.
  • Carte J, Wang R, Li H, et al. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 2008;22(24):3489–3496.
  • Khandelwal N, Simpson J, Taylor G, et al. Nucleolar NF-κB/RelA mediates apoptosis by causing cytoplasmic relocalization of nucleophosmin. Cell Death Differ. 2011;18(12):1889–1903.
  • Chao WC, Yen CL, Wu CH, et al. How mycobacteria take advantage of the weakness in human immune system in the modern world. J Microbiol Immunol Infect. 2020;53(2):209–215.
  • Tanaka T, Narazaki M, Masuda K, et al. Regulation of IL-6 in immunity and diseases. Adv Exp Med Biol. 2016;941:79–88.
  • Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448–457.
  • Pasparakis M, Alexopoulou L, Episkopou V, et al. Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med. 1996;184(4):1397–1411.
  • Deng W, Li W, Zeng J, et al. Mycobacterium protein tuberculosis PPE family Rv1808 manipulates cytokines profile via co-activation of MAPK and NF-κB signaling pathways. Cell Physiol Biochem. 2014;33(2):273–288.
  • Domingo-Gonzalez R, Prince O, Cooper A, et al. Cytokines and chemokines in mycobacterium tuberculosis infection. Microbiol Spectr. 2016;4:TBTB2-0018-2016.
  • Flynn JL, Goldstein MM, Chan J, et al. Tumor necrosis factor-α is required in the protective immune response against mycobacterium tuberculosis in mice. Immunity. 1995;2(6):561–572.
  • Bean AG, Roach DR, Briscoe H, et al. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol. 1999;162(6):3504–3511.
  • Leal IS, Smedegård B, Andersen P, et al. Interleukin-6 and interleukin-12 participate in induction of a type 1 Protective T-cell response during vaccination with a tuberculosis subunit vaccine. Infect Immun. 1999;67(11):5747–5754.
  • Kawai T, Akira S. Signaling to NF-κB by toll-like receptors. Trends Mol Med. 2007;13(11):460–469.
  • Pei Z, Li H, Guo Y, et al. Sodium selenite inhibits the expression of VEGF, TGFβ1 and IL-6 induced by LPS in human PC3 cells via TLR4-NF-KB signaling blockage. Int Immunopharmacol. 2010;10(1):50–56.
  • Niu W, Sun B, Li M, et al. TLR-4/microRNA-125a/NF-κB signaling modulates the immune response to mycobacterium tuberculosis infection. Cell Cycle. 2018;17(15):1931–1945.
  • Babu M, Beloglazova N, Flick R, et al. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol. 2011;79(2):484–502.
  • Li R, Fang L, Tan S, et al. Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity. Cell Res. 2016;26(12):1273–1287.
  • Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–87.
  • Liao HK, Hatanaka F, Araoka T, et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell. 2017;171(7):1495–1507.e15.
  • Qin P, Parlak M, Kuscu C, et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun. 2017;8(1):14725.
  • Zhou Y, Zhu S, Cai C, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 2014;509(7501):487–491.
  • Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540(7631):144–149.
  • Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–87.
  • Shifrut E, Carnevale J, Tobin V, et al. Genome-wide CRISPR screens in primary human t cells reveal key regulators of immune function. Cell. 2018;175(7):1958–1971.e15.
  • Parish T, Stoker NG. glnE is an essential gene in mycobacterium tuberculosis. J Bacteriol. 2000;182(20):5715–5720.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120.
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
  • Francsics G, Lax PD. Analysis of A PICARD modular group. Proc Natl Acad Sci U S A. 2006;103(30):11103–11105.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
  • Chen T, Chen X, Zhang S, et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteomics Bioinformatics. 2021. DOI:10.1016/j.gpb.2021.08.001
  • Xue Y, Bao Y, Zhang Z, Members and Partners, CNCB-NGDC. Database resources of the national genomics data center, china national center for bioinformation in 2021. Nucleic Acids Res. 2020;49(D1):D18–D28.