2,344
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Association of follicular helper T and follicular regulatory T cells with severity and hyperglycemia in hospitalized COVID-19 patients

, , , , , , , , , & show all
Pages 569-577 | Received 28 Aug 2021, Accepted 25 Feb 2022, Published online: 14 Mar 2022

References

  • Wang C, Horby PW, Hayden FG, et al. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–473.
  • Sherif M, Saad K, Elgohary G, AbdElHaffez A, El-Aziz Abd N, Is COVID-19 a Systemic Disease? Coronaviruses 2021; 2(5): e060521189167. https://dx.doi.org/10.2174/2666796701999201216101914
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
  • Hale JS, Youngblood B, Latner DR, et al. Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection. Immunity. 2013;38(4):805–817.
  • Cannons JL, Lu KT, Schwartzberg PL. T follicular helper cell diversity and plasticity. Trends Immunol. 2013;34(5):200–207.
  • Akiba H, Takeda K, Kojima Y, et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol. 2005;175(4):2340–2348.
  • Yan L, de Leur K, Hendriks RW, et al. T follicular helper cells as a new target for immunosuppressive therapies. Front Immunol. 2017;8:1510.
  • Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity. 2019;50(5):1132–1148.
  • Chung Y, Tanaka S, Chu F, et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med. 2011;17(8):983–988.
  • Maceiras AR, Almeida SCP, Mariotti-Ferrandiz E, et al. T follicular helper and T follicular regulatory cells have different TCR specificity. Nat Commun. 2017;8(1):1–12.
  • Sage PT, Sharpe AH. T follicular regulatory cells in the regulation of B cell responses. Trends Immunol. 2015;36(7):410–418.
  • Hariyanto TI, Valeriani K, Kwenandar F, et al. Inflammatory and hematologic markers as predictors of severe outcomes in COVID-19 infection: A systematic review and meta-analysis. Am J Emerg Med. 2021;41:110–119. DOI:10.1016/j.ajem.2020.12.076
  • Chandrashekar A, Liu J, Martinot AJ, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;369(6505):812–817.
  • Metwally AA, Mehta P, Johnson BS, et al. COVID-19–induced New-Onset Diabetes: Trends and Technologies. Diabetes. 2021;70(12):2733–2744.
  • World Health Organization. BASIC EMERGENCY CARE: approach to the acutely ill and injured, World Health Organization. World Health Organization (WHO) and the International Committee of the Red Cross (ICRC), Editors: Teri Reynolds, Nikki Roddie, Andi Tenner, Heike Geduld.2018. ISBN (WHO) 978–92–4-151308–1
  • World Health Organization. Clinical management of COVID-19: interim guidance, 27 May 2020, World Health Organization; 2020. WHO reference number: WHO/2019-nCoV/clinical/2020.5. https://apps.who.int/iris/handle/10665/332196
  • Chen J, Lau YF, Lamirande EW, et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J Virol. 2010;84(3):1289–1301.
  • Huang Q, Hu J, Tang J, Xu L, L, Ye, L, et al. Molecular basis of the differentiation and function of virus specific follicular helper CD4+ T Cells. Front Immunol. 2019;10(249). DOI:10.3389/fimmu.2019.00249
  • Morita R, Schmitt N, Bentebibel S-E, et al. Human blood CXCR5+ CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34(1):108–121.
  • Mathew D, Giles JR, Baxter AE, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020;369(6508). DOI:10.1126/science.abc8511
  • Thevarajan I, Nguyen TH, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med. 2020;26(4):453–455.
  • Yang X, Dai T, Zhou X, Qian H, Guo R, Lei L, Zhang X, Zhang D, Shi L, Cheng Y, et al. Analysis of adaptive immune cell populations and phenotypes in the patients infected by SARS-CoV-2. medRxiv. 2020. https://doi.org/10.1101/2020.03.23.20040675
  • Juno JA, Tan H-X, Lee WS, et al. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat Med. 2020;26(9):1428–1434.
  • Lu S, Zhao Y, Yu W, et al. Comparison of nonhuman primates identified the suitable model for COVID-19. Signal Transduct Target Ther. 2020;5(1):1–9.
  • Okba NMA, Müller MA, Li W, et al. Severe acute respiratory syndrome Coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis. 2020;26(7):1478–1488.
  • To K-K-W, Tsang O-T-Y, Leung W-S, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20(5):565–574.
  • Boppana S, Qin K, Files JK, et al. SARS-CoV-2-Specific peripheral T follicular helper cells correlate with neutralizing antibodies and increase during convalescence. medRxiv. 2020; 2020.2010.2007.20208488. DOI:10.1101/2020.10.07.20208488.
  • De Biasi S, Meschiari M, Gibellini L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020;11(1):1–17.
  • Gong F, Dai Y, Zheng T, et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J Clin Invest. 2020;130(12):6588–6599. DOI:10.1172/JCI141054
  • Oja AE, Saris A, Ghandour CA, et al. Divergent SARS‐CoV‐2‐specific T and B cell responses in severe but not mild COVID‐19 patients. Eur J Immunol. 2020;50(12):1998–2012.
  • Zhang J, Wu Q, Liu Z, et al. Spike-Specific circulating T follicular helper cell and cross-neutralizing antibody responses in COVID-19-convalescent individuals. Nat Microbiol. 2021;6(1):51–58.
  • Kaneko N, Kuo H-H, Boucau J, et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell. 2020;183(1):143–157. e113.
  • Marik PE. Precision glycemic control in the ICU. Crit Care Med. 2016;44(7):1433–1434. DOI:10.1097/CCM.0000000000001683
  • Ren H, Yang Y, Wang F, et al. Association of the insulin resistance marker TyG index with the severity and mortality of COVID-19. Cardiovasc Diabetol. 2020;19:1–8.
  • Xiang J, Wen J, Yuan X, et al. Potential biochemical markers to identify severe cases among COVID-19 patients. medRxiv. 2020. DOI:10.1101/2020.09.19.20197921
  • Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi:10.1002/path.1570
  • Yang J-K, Lin S-S, Ji X-J, et al. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–199.
  • Unsworth R, Wallace S, Oliver NS, et al. New-Onset type 1 diabetes in children during COVID-19: multicenter regional findings in the U.K. Diabetes Care. 2020;43(11):e170–e171.
  • Dhaeze T, Stinissen P, Liston A, et al. Humoral autoimmunity: a failure of regulatory T cells? Autoimmun Rev. 2015;14(8):735–741.