3,167
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Hypoxia triggers the outbreak of infectious spleen and kidney necrosis virus disease through viral hypoxia response elements

, , , , , ORCID Icon & show all
Pages 714-726 | Received 07 Nov 2021, Accepted 11 Apr 2022, Published online: 25 Apr 2022

References

  • Engering A, Hogerwerf L, Slingenbergh J. Pathogen-Host-Environment interplay and disease emergence. Emerg Microbes Infect. 2013;2(2):e5. DOI:10.1038/emi.2013.5
  • Trebicki P, Nancarrow N, Cole E, et al. Virus disease in wheat predicted to increase with a changing climate. Glob Chang Biol. 2015;21(9):3511–3519. DOI:10.1111/gcb.12941
  • Sanderson CE, Alexander KA. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob Chang Biol. 2020;26(8):4284–4301. DOI:10.1111/gcb.15163
  • Reyes A, Duarte LF, Farias MA, et al. Impact of hypoxia over human viral infections and key cellular processes. Int J Mol Sci. 2021;22(15):7954. DOI:10.3390/ijms22157954
  • Farquhar MJ, Humphreys IS, Rudge SA, et al. Autotaxin-Lysophosphatidic acid receptor signalling regulates hepatitis C virus replication. J Hepatol. 2017;66(5):919–929. DOI:10.1016/j.jhep.2017.01.009
  • Aghi MK, Liu TC, Rabkin S, et al. Hypoxia enhances the replication of oncolytic herpes simplex virus. Mol Ther. 2009;17(1):51–56. DOI:10.1038/mt.2008.232
  • Kulkarni A, Mateus M, Thinnes CC, et al. Glucose metabolism and oxygen availability govern reactivation of the latent human retrovirus HTLV-1. Cell Chem Biol. 2017;24(11):1377–1387. DOI:10.1016/j.chembiol.2017.08.016
  • Davis DA, Rinderknecht AS, Zoeteweij JP, et al. Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood. 2001;97(10):3244–3250. DOI:10.1182/blood.V97.10.3244
  • Jiang JH, Wang N, Li A, et al. Hypoxia can contribute to the induction of the Epstein-Barr virus (EBV) lytic cycle. J Clin Virol. 2006;37(2):98–103. DOI:10.1016/j.jcv.2006.06.013
  • Lopez-Barneo J, Pardal R, Ortega-Saenz P. Cellular mechanism of oxygen sensing. Annu Rev Physiol. 2001;63:259–287. DOI:10.1146/annurev.physiol.63.1.259
  • Palazon A, Goldrath AW, Nizet V, et al. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41(4):518–528. DOI:10.1016/j.immuni.2014.09.008
  • Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005;2005(306):e12. DOI:10.1126/stke.3062005re12
  • Santos S, Andrade DJ. HIF-1alpha and infectious diseases: a new frontier for the development of new therapies. Rev Inst Med Trop Sao Paulo. 2017;59:e92. DOI:10.1590/S1678-9946201759092
  • Vassilaki N, Frakolaki E. Virus-Host interactions under hypoxia. Microbes Infect. 2017;19(3):193–203. DOI:10.1016/j.micinf.2016.10.004
  • Kraus RJ, Yu X, Cordes BA, et al. Hypoxia-Inducible factor-1alpha plays roles in Epstein-Barr virus’s natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathog. 2017;13(6):e1006404. DOI:10.1371/journal.ppat.1006404
  • Pina-Oviedo S, Khalili K, Del VL. Hypoxia inducible factor-1 alpha activation of the JCV promoter: role in the pathogenesis of progressive multifocal leukoencephalopathy. Acta Neuropathol. 2009;118(2):235–247. DOI:10.1007/s00401-009-0533-0
  • Zhuang X, Pedroza-Pacheco I, Nawroth I, et al. Hypoxic microenvironment shapes HIV-1 replication and latency. Commun Biol. 2020;3(1):376. DOI:10.1038/s42003-020-1103-1
  • Breitburg D, Levin LA, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters. Science. 2018;359(6371):6371. DOI:10.1126/science.aam7240
  • Breitburg DL, Hondorp DW, Davias LA, et al. Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes. Ann Rev Mar Sci. 2009;1:329–349. DOI:10.1146/annurev.marine.010908.163754
  • Portner HO, Peck MA. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol. 2010;77(8):1745–1779. DOI:10.1111/j.1095-8649.2010.02783.x
  • Wang YQ, Lu L, Weng SP, et al. Molecular epidemiology and phylogenetic analysis of a marine fish infectious spleen and kidney necrosis virus-like (ISKNV-like) virus. Arch Virol. 2007;152(4):763–773. DOI:10.1007/s00705-006-0870-4
  • He JG, Deng M, Weng SP, et al. Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology. 2001;291(1):126–139. DOI:10.1006/viro.2001.1208
  • Dong C, Weng S, Shi X, et al. Development of a mandarin fish Siniperca chuatsi fry cell line suitable for the study of infectious spleen and kidney necrosis virus (ISKNV). Virus Res. 2008;135(2):273–281. DOI:10.1016/j.virusres.2008.04.004
  • Lin YF, He J, Zeng RY, et al. Deletion of the Infectious spleen and kidney necrosis virus ORF069L reduces virulence to mandarin fish Siniperca chuatsi. Fish Shellfish Immunol. 2019;95:328–335. DOI:10.1016/j.fsi.2019.10.039
  • S C. The method of “right and wrong cases” (constant stimuli) without Gauss’s formula. Br J Psychol. 1908;(Part 3)(II):227–242.
  • K G. Beitrag zur kollektiven Behandlung pharmakologischer reihenversuche. Arch F Exp Pathol U Pharmakol. 1931;4(162):480–483.
  • Liu PJ, Balfe P, Mckeating JA, et al. Oxygen sensing and viral replication: Implications for tropism and pathogenesis. Viruses. 2020;12(11). DOI:10.3390/v12111213.
  • He JG, Weng SP, Zeng K. Systemic disease caused by an iridovirus-like agent in cultured mandarin fish, Siniperca chuatsi (Basilewsky), in China. J Fish Dis. 2000;3(23):219–222.
  • He J, Yu Y, Qin XW, et al. Identification and functional analysis of the Mandarin fish (Siniperca chuatsi) hypoxia-inducible factor-1 alpha involved in the immune response. Fish Shellfish Immunol. 2019;92:141–150. DOI:10.1016/j.fsi.2019.04.298
  • Rodriguez J, Pilkington R, Garcia MA, et al. Substrate-trapped interactors of PHD3 and FIH cluster in distinct signaling pathways. Cell Rep. 2016;14(11):2745–2760. DOI:10.1016/j.celrep.2016.02.043
  • Gordon JE. Evolution of an Epidemiology of Health. Chapters 3, 4 and 5 in the epidemiology of health. New York: Health Education Council; 1953.
  • Hueffer K, O’-Hara TM, Follmann EH. Adaptation of mammalian host-pathogen interactions in a changing arctic environment. Acta Vet Scand. 2011;53:17. DOI:10.1186/1751-0147-53-17
  • Burke RM, Shah MP, Wikswo ME, et al. The norovirus epidemiologic triad: predictors of severe outcomes in US norovirus outbreaks, 2009-2016. J Infect Dis. 2019;219(9):1364–1372. DOI:10.1093/infdis/jiy569
  • Oliveira ARS, Cohnstaedt LW, Cernicchiaro N. Japanese encephalitis virus: placing disease vectors in the epidemiologic triad. Ann Entomol Soc Am. 2018;6:111–303 doi:111–303 doi:.
  • Dixon P, Paley R, Alegria-Moran R, et al. Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review. Vet Res. 2016;47(1):63. DOI:10.1186/s13567-016-0341-1
  • Chou HY, Peng TY, Chang SJ, et al. Effect of heavy metal stressors and salinity shock on the susceptibility of grouper (Epinephelus sp.) to infectious pancreatic necrosis virus. Virus Res. 1999;63(1–2):121–129. DOI:10.1016/S0168-1702(99)00065-9
  • Price SJ, Leung W, Owen CJ, et al. Effects of historic and projected climate change on the range and impacts of an emerging wildlife disease. Glob Chang Biol. 2019;25(8):2648–2660. DOI:10.1111/gcb.14651
  • Jj SCKP E. Effects of sublethal dissolved oxygen stress on blood glucose and susceptibility to Streptococcus agalactiae in Nile tilapia Oreochromis. J Aquat an Health. 2003;15:202–208.
  • Mmsk FY. Influence of dissolved oxygen concentration on the mortality of yellowtail experimentally infected with Enterococcus seriolicida. Fish Pathol. 1997;32:129–130.
  • Abdel-Tawwab M, Monier MN, Hoseinifar SH, et al. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish Physiol Biochem. 2019;45(3):997–1013. DOI:10.1007/s10695-019-00614-9
  • Jenny JP, Francus P, Normandeau A, et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Chang Biol. 2016;22(4):1481–1489. DOI:10.1111/gcb.13193
  • Altieri AH, Gedan KB. Climate change and dead zones. Glob Chang Biol. 2015;21(4):1395–1406. DOI:10.1111/gcb.12754
  • Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science. 2008;321(5891):926–929. DOI:10.1126/science.1156401
  • Yan L, Guo H, Sun X, et al. Characterization of grass carp reovirus minor core protein VP4. Virol J. 2012;9:89. DOI:10.1186/1743-422X-9-89
  • Aoki T, Hirono I, Kurokawa K, et al. Genome sequences of three koi herpesvirus isolates representing the expanding distribution of an emerging disease threatening koi and common carp worldwide. J Virol. 2007;81(10):5058–5065. DOI:10.1128/JVI.00146-07
  • Li F, Gao M, Xu L, et al. Comparative genomic analysis of three white spot syndrome virus isolates of different virulence. Virus Genes. 2017;53(2):249–258. DOI:10.1007/s11262-016-1421-z