1,988
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Proteomics analysis reveals a critical role for the WSSV immediate-early protein IE1 in modulating the host prophenoloxidase system

, , , , , ORCID Icon, , , & show all
Pages 936-948 | Received 15 Feb 2022, Accepted 12 May 2022, Published online: 30 May 2022

References

  • Escobedo-Bonilla CM, Alday-Sanz V, Wille M, et al. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis. 2008;31:1–18.
  • Dey BK, Dugassa GH, Hinzano SM, et al. Causative agent, diagnosis and management of white spot disease in shrimp: a review. Rew Aquacult. 2020;12(2):822–865.
  • Yang F, He J, Lin XH, et al. Complete genome sequence of the shrimp white spot bacilliform virus. J Virol. 2001;75(23):11811–11820. DOI:10.1128/JVI.75.23.11811-11820.2001
  • Tsai JM, Wang HC, Leu JH, et al. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol. 2004;78(20):11360–11370. DOI:10.1128/JVI.78.20.11360-11370.2004
  • van Hulten MC, Witteveldt J, Peters S, et al. The white spot syndrome virus DNA genome sequence. Virology. 2001;286(1):7–22. DOI:10.1006/viro.2001.1002
  • Marks H, Vorst O, van Houwelingen A, et al. Gene-Expression profiling of white spot syndrome virus in vivo. J Gen Virol. 2005;86(Pt 7):2081–2100. DOI:10.1099/vir.0.80895-0
  • Fox HL, Dembowski JA, DeLuca NA. A herpesviral immediate early protein promotes transcription elongation of viral transcripts. Mbio. 2017;8(3): e00745-17. DOI:10.1128/mBio.00745-17.
  • Guan XM, Zhang MD, Fu M, et al. Herpes simplex virus type 2 immediate early protein ICP27 inhibits IFN-β production in mucosal epithelial cells by antagonizing IRF3 activation. Front Immunol. 2019;10:290.
  • Long XB, Yang ZW, Li Y, et al. BRLF1-Dependent viral and cellular transcriptomes and transcriptional regulation during EBV primary infection in B lymphoma cells. Genomics. 2021;113(4):2591–2604. DOI:10.1016/j.ygeno.2021.05.039
  • Torres L, Tang QY. Immediate-Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses. Virol Sin. 2014;29(6):343–352.
  • Liu WJ, Chang YS, Wang CH, et al. Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology. 2005;334(2):327–341. DOI:10.1016/j.virol.2005.01.047
  • Li F, Li MY, Ke W, et al. Identification of the immediate-early genes of white spot syndrome virus. Virology. 2009;385(1):267–274. DOI:10.1016/j.virol.2008.12.007
  • Lin FY, Huang H, Xu LM, et al. Identification of three immediate-early genes of white spot syndrome virus. Arch Virol. 2011;156(9):1611–1614. DOI:10.1007/s00705-011-1004-1
  • He F, Kwang J. Identification and characterization of a new E3 ubiquitin ligase in white spot syndrome virus involved in virus latency. Virol J. 2008;5:151.
  • Chen AJ, Gao L, Wang XW, et al. SUMO-Conjugating enzyme E2 UBC9 mediates viral immediate-early protein SUMOylation in crayfish to facilitate reproduction of white spot syndrome virus. J Virol. 2013;87(1):636–647. DOI:10.1128/JVI.01671-12
  • Lu HS, Ruan LW, Xu X. An immediate-early protein of white spot syndrome virus modulates the phosphorylation of focal adhesion kinase of shrimp. Virology. 2011;419(2):84–89.
  • Wang CQ, Ruan LW, Shi H, et al. Phosphorylation of shrimp tcf by a viral protein kinase WSV083 suppresses its antiviral effect. Front Immunol. 2021;12:698697.
  • Liu WJ, Chang YS, Wang HC, et al. Transactivation, dimerization, and DNA-binding activity of white spot syndrome virus immediate-early protein IE1. J Virol. 2008;82(22):11362–11373. DOI:10.1128/JVI.01244-08
  • Liu WJ, Chang YS, Huang WT, et al. Penaeus monodon TATA box-binding protein interacts with the white spot syndrome virus transactivator IE1 and promotes its transcriptional activity. J Virol. 2011;85(13):6535–6547. DOI:10.1128/JVI.02433-10
  • Huang JY, Liu WJ, Wang HC, et al. Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1. Antioxid Redox Sign. 2012;17(6):914–926. DOI:10.1089/ars.2011.4264
  • Ran XZ, Bian XF, Ji YC, et al. White spot syndrome virus IE1 and WSV056 modulate the G1/S transition by binding to the host retinoblastoma protein. J Virol. 2013;87(23):12576–12582. DOI:10.1128/JVI.01551-13
  • Yao DF, Ruan LW, Lu HS, et al. Shrimp STAT was hijacked by white spot syndrome virus immediate-early protein IE1 involved in modulation of viral genes. Fish Shelfish Immunol. 2016;59:268–275.
  • Wang S, Li HY, Weng SP, et al. White spot syndrome virus establishes a novel IE1/JNK/c-Jun positive feedback loop to drive replication. iScience. 2020;23(1):100752. DOI:10.1016/j.isci.2019.100752
  • Clevers H, Nusse R. Wnt/β-Catenin signaling and disease. Cell. 2012;149(6):1192–1205.
  • Sun JZ, Ruan LW, Zhou CZ, et al. Characterization and function of a beta-catenin homolog from Litopenaeus vannamei in WSSV infection. Dev Comp Immunol. 2017;76:412–419.
  • Ruan LW, Sun JZ, Zhou CZ, et al. Cloning, identification and function analysis of a Chibby homolog from Litopenaeus vannamei. Fish Shelfish Immunol. 2018;78:114–120.
  • Xie XX, Li HY, Xu LM, et al. A simple and efficient method for purification of intact white spot syndrome virus (WSSV) viral particles. Virus Res. 2005;108(1–2):63–67. DOI:10.1016/j.virusres.2004.08.002
  • Zhou Q, Qi YP, Yang F. Application of spectrophotometry to evaluate the concentration of purified White Spot Syndrome Virus. J Virol Methods. 2007;146(1–2):288–292.
  • Zhao WL, Zheng ZH, Aweya JJ, et al. Litopenaeus vannamei Notch interacts with COP9 signalosome complex subunit 1 (CNS1) to negatively regulate the NF-kappaB pathway. J Proteomics. 2021;232:104074.
  • Zheng ZH, Wang F, Aweya JJ, et al. Comparative transcriptomic analysis of shrimp hemocytes in response to acute hepatopancreas necrosis disease (AHPND) causing Vibrio parahemolyticus infection. Fish Shelfish Immunol. 2018;74:10–18.
  • Amparyup P, Charoensapsri W, Tassanakajon A. Two prophenoloxidases are important for the survival of Vibrio harveyi challenged shrimp Penaeus monodon. Dev Comp Immunol. 2009;33(2):247–256.
  • Zhang X, Zhu YT, Li XJ, et al. Lipopolysaccharide and beta-1, 3-glucan binding protein (LGBP) stimulates prophenoloxidase activating system in Chinese mitten crab (Eriocheir sinensis). Dev Comp Immunol. 2016;61:70–79.
  • Zhan SX, Aweya JJ, Wang F, et al. Litopenaeus vannamei attenuates white spot syndrome virus replication by specific antiviral peptides generated from hemocyanin. Dev Comp Immunol. 2019;91:50–61.
  • Cerenius L, Soderhall K. The prophenoloxidase-activating system in invertebrates. Immunol Rev. 2004;198:116–126.
  • Cerenius L, Lee BL, Soderhall K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 2008;29(6):263–271.
  • Amparyup P, Charoensapsri W, Tassanakajon A. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shelfish Immunol. 2013;34(4):990–1001.
  • Charoensapsri W, Amparyup P, Hirono I, et al. Gene silencing of a prophenoloxidase activating enzyme in the shrimp, Penaeus monodon, increases susceptibility to Vibrio harveyi infection. Dev Comp Immunol. 2009;33(7):811–820. DOI:10.1016/j.dci.2009.01.006
  • Pang Z, Kim SK, Yu J, et al. Distinct regulation patterns of the two prophenoloxidase activating enzymes corresponding to bacteria challenge and their compensatory over expression feature in white shrimp (Litopenaeus vannamei). Fish Shelfish Immunol. 2014;39(2):158–167. DOI:10.1016/j.fsi.2014.04.026
  • Sutthangkul J, Amparyup P, Charoensapsri W, et al. Suppression of shrimp melanization during white spot syndrome virus infection. J Bio Chem. 2015;290(10):6470–6481. DOI:10.1074/jbc.M114.605568
  • Wang W, Luo P, Pan CK, et al. LvPPAE2 induced by WSV056 confers host defense against WSSV in Litopenaeus vannamei. Fish Shelfish Immunol. 2020;96:319–329.
  • Jaree P, Wongdontri C, Somboonwiwat K. White spot syndrome virus-induced shrimp miR-315 attenuates prophenoloxidase activation via PPAE3 gene suppression. Front Immunol. 2018;9:2184.
  • Sutthangkul J, Amparyup P, Eum JH, et al. Anti-Melanization mechanism of the white spot syndrome viral protein, WSSV453, via interaction with shrimp proPO-activating enzyme, PmproPPAE2. J Gen Virol. 2017;98(4):769–778. DOI:10.1099/jgv.0.000729
  • Sangsuriya P, Charoensapsri W, Sutthangkul J, et al. A novel white spot syndrome virus protein WSSV164 controls prophenoloxidases, PmproPos in shrimp melanization cascade. Dev Comp Immunol. 2018;86:109–117.
  • Ai HS, Huang YC, Li SD, et al. Characterization of a prophenoloxidase from hemocytes of the shrimp Litopenaeus vannamei that is down-regulated by white spot syndrome virus. Fish Shelfish Immunol. 2008;25(1–2):28–39. DOI:10.1016/j.fsi.2007.12.002
  • Ai HS, Liao JX, Huang XD, et al. A novel prophenoloxidase 2 exists in shrimp hemocytes. Dev Comp Immunol. 2009;33(1):59–68. DOI:10.1016/j.dci.2008.07.017
  • Garcia-Carreno FL, Cota K, Del Toro MAN. Phenoloxi- dase activity of hemocyanin in whiteleg shrimp Penaeus vannamei: Conversion, characterization of catalytic properties, and role in postmortem melanosis. J Agric Food Chem. 2008;56(15):6454–6459.
  • Xu JY, Wu SJ, Zhang XB. Novel function of QM protein of shrimp (Penaeus japonicus) in regulation of phenol oxidase activity by interaction with hemocyanin. Cell Physiol Biochem. 2008;21(5–6):473–480.
  • Ponprateep S, Vatanavicharn T, Lo CF, et al. Alpha-2-Macroglobulin is a modulator of prophenoloxidase system in pacific white shrimp Litopenaeus vannamai. Fish Shelfish Immunol. 2017;62:68–74.
  • Zhou H, Chen XB, Aweya JJ, et al. Interaction of Penaeus vannamei hemocyanin and α2-macroglobulin modulates the phenoloxidase activity. Mol Immunol. 2021;138:181–187.