1,671
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum

, , , , , , , & ORCID Icon show all
Pages 1221-1241 | Received 10 May 2022, Accepted 08 Jul 2022, Published online: 26 Jul 2022

References

  • FAO editor. The state of world fisheries and aquaculture 2020. Sustainability in action. Rome, Italy: Food and Agriculture Organization (FAO); (The State of World Fisheries and Aquaculture (SOFIA); 2020.
  • Bernardet JF. Flavobacteriaceae. Bergey’s Manual Syst Archaea Bacteria. 2015. doi:10.1002/9781118960608.fbm00069.
  • Nematollahi A, Decostere A, Pasmans F, et al. Flavobacterium psychrophilum infections in salmonid fish [Research support, Non-U.S. Gov’t review]. J Fish Dis. 2003;26(10):563–574. DOI:10.1046/j.1365-2761.2003.00488.x.
  • Avendano-Herrera R, Tapia-Cammas D, Duchaud E, et al. Serological diversity in Flavobacterium psychrophilum: a critical update using isolates retrieved from Chilean salmon farms. J Fish Dis. 2020;43(8):877–888.
  • Fujiwara-Nagata E, Chantry-Darmon C, Bernardet JF, et al. Population structure of the fish pathogen Flavobacterium psychrophilum at whole-country and model river levels in Japan [Research support, Non-U.S. Gov’t]. Vet Res. 2013;44:34.
  • Nicolas P, Mondot S, Achaz G, et al. Population structure of the fish-pathogenic bacterium Flavobacterium psychrophilum [Research support, Non-U.S. Gov’t]. Appl Environ Microbiol. 2008;74(12):3702–3709.
  • Nilsen H, Sundell K, Duchaud E, et al. Multilocus sequence typing identifies epidemic clones of Flavobacterium psychrophilum in Nordic countries [Research support, Non-U.S. Gov’t]. Appl Environ Microbiol. 2014;80(9):2728–2736. DOI:10.1128/AEM.04233-13.
  • Knupp C, Wiens GD, and Faisal M, et al. Large-scale analysis of Flavobacterium psychrophilum MLST genotypes recovered from North American salmonids indicates both newly identified and recurrent clonal complexes are associated with disease. Appl Environ Microbiol 2019 Mar; 85(6):e02305–18. doi:10.1128/AEM.02305-18.
  • Castillo D, Christiansen RH, Dalsgaard I, et al. Bacteriophage resistance mechanisms in the fish pathogen Flavobacterium psychrophilum: linking genomic mutations to changes in bacterial virulence factors [Research support, Non-U.S. Gov’t]. Appl Environ Microbiol. 2015;81(3):1157–1167. DOI:10.1128/AEM.03699-14.
  • Fraslin C, Quillet E, Rochat T, et al. Combining multiple approaches and models to dissect the genetic architecture of resistance to infections in fish. Front Genet. 2020;11:677.
  • Gomez E, Mendez J, Cascales D, et al. Flavobacterium psychrophilum vaccine development: a difficult task [Research support, Non-U.S. Gov’t review]. Microb Biotechnol. 2014;7(5):414–423.
  • Wiens GD, Lapatra SE, Welch T, et al. On-farm performance of rainbow trout (Oncorhynchus mykiss) selectively bred for resistance to bacterial cold water disease: effect of rearing environment on survival phenotype. Aquacult. 2013;388-391:128–136.
  • Barnes ME, Brown ML. A review of Flavobacterium psychrophilum biology, clinical signs, and bacterial cold water disease prevention and treatment. The Open Fish Sci J. 2011;2011(4):1–9.
  • Decostere A, D’-Haese E, Lammens M, et al. In vivo study of phagocytosis, intracellular survival and multiplication of Flavobacterium psychrophilum in rainbow trout, Oncorhynchus mykiss (Walbaum), spleen phagocytes. J Fish Dis. 2001;2001(24):481–487.
  • Evensen O, Lorenzen E. An immunohistochemical study of Flexibacter psychrophilus infection in experimentally and naturally infected rainbow trout (Oncorhynchus mykiss) fry. Dis Aquat Organ. 1996;25(1):53–61.
  • Wiklund T, Dalsgaard I. Association of Flavobacterium psychrophilum with rainbow trout (Oncorhynchus mykiss) kidney phagocytes in vitro. Fish & Shellfish Immunol. 2003 Nov;15(5):387–395.
  • Bertolini JM, Wakabayashi H, Watral VG, et al. Electrophoretic detection of proteases from selected strains of Flexibacter psychrophilus and assessment of their variability. J Aquat Anim Health. 1994;6:224–233.
  • Hogfors-Ronnholm E, Wiklund T. Hemolytic activity in Flavobacterium psychrophilum is a contact-dependent, two-step mechanism and differently expressed in smooth and rough phenotypes. Microb Pathog. 2010 Dec;49(6):369–375.
  • Otis EJ. Lesions of cold-water disease in steelhead trout (Salmo gairdneri): the role of cytophaga psychrophila extracellular products [MSc thesis]. Kingston: University of Rhode Island; 1984.
  • Papadopoulou A, Dalsgaard I, Linden A, et al. In vivo adherence of Flavobacterium psychrophilum to mucosal external surfaces of rainbow trout (Oncorhynchus mykiss) fry. J Fish Dis. 2017;40(10):1309–1320.
  • Barbier P, Rochat T, Mohammed HH, et al. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol. 2020 Jun 12;86(16). 10.1128/AEM.00799-20
  • Duchaud E, Boussaha M, Loux V, et al. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum [Research support, Non-U.S. Gov’t]. Nat Biotechnol. 2007;25(7):763–769. DOI:10.1038/nbt1313.
  • Pérez-Pascual D, Rochat T, Kerouault B, et al. More than gliding: involvement of GldD and GldG in the virulence of Flavobacterium psychrophilum. Front Microbiol. 2017;8:2168.
  • Langevin C, Blanco M, Martin SA, et al. Transcriptional responses of resistant and susceptible fish clones to the bacterial pathogen Flavobacterium psychrophilum [Research support, Non-U.S. Gov’t]. PLoS One. 2012;7(6):e39126.
  • Marancik D, Gao G, Paneru B, et al. Whole-body transcriptome of selectively bred, resistant-, control-, and susceptible-line rainbow trout following experimental challenge with Flavobacterium psychrophilum. Front Genet. 2014;5:453.
  • Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010 Aug 12;6(8):e1000949.
  • Schauer K, Rodionov DA, de Reuse H. New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci. 2008 Jul;33(7):330–338.
  • Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS Microbiol Rev. 2003 Jun;27(2–3):215–237.
  • Moller JD, Ellis AE, Barnes AC, et al. Iron acquisition mechanisms of Flavobacterium psychrophilum. J Fish Dis. 2005;28(7):391–398.
  • Alvarez B, Alvarez J, Menendez A, et al. A mutant in one of two exbD loci of a TonB system in Flavobacterium psychrophilum shows attenuated virulence and confers protection against cold water disease. Microbiol. 2008;154(Pt 4):1144–1151.
  • Guérin C, Lee B-H, Fradet B, et al. Transcriptome architecture and regulation at environmental transitions in flavobacteria: the case of an important fish pathogen. ISME Commun. 2021;1(1):33. 2021/07/07. doi:10.1038/s43705-021-00029-9.
  • Rochat T, Barbier P, Nicolas P, et al. Complete genome sequence of Flavobacterium psychrophilum strain OSU THCO2-90, used for functional genetic analysis. Genome Announc. 2017 Feb 23;5(8). 10.1128/genomeA.01665-16
  • Rochat T, Pérez-Pascual D, and Nilsen H, et al. Identification of a novel elastin-degrading enzyme from the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 2019 Mar;85(6):e02305–18. doi:10.1128/AEM.02305-18.
  • Vallenet D, Calteau A, Cruveiller S, et al. MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes. Nucleic Acids Res. 2017 Jan 04;45(D1):D517–D528. 10.1093/nar/gkw1101
  • Pei J, Kim BH, Grishin NV. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 2008 Apr;36(7):2295–2300.
  • Zhu Y, Thomas F, Larocque R, et al. Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by Zobellia galactanivorans. Environ Microbiol. 2017;19(6):2164–2181.
  • Alvarez B, Secades P, McBride MJ, et al. Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol. 2004;70(1):581–587.
  • Lechardeur D, Cesselin B, Liebl U, et al. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis. J Biol Chem. 2012 Feb 10;287(7):4752–4758. 10.1074/jbc.M111.297531
  • Mandl CW, Heinz FX, Puchhammer-Stockl E, et al. Sequencing the termini of capped viral RNA by 5‘-3’ ligation and PCR. Biotechniques. 1991;10(4):484, 486.
  • Thompson WR. Use of moving averages and interpolation to estimate median-effective dose: I. Fundamental formulas, estimation of error, and relation to other methods. Bacteriol Rev. 1947 Jun;11(2):115–145.
  • Quillet E, Dorson M, Le Guillou S, et al. Wide range of susceptibility to rhabdoviruses in homozygous clones of rainbow trout. Fish & Shellfish Immunol. 2007;22(5):510–519. DOI:10.1016/j.fsi.2006.07.002.
  • Duchaud E, Rochat T, Habib C, et al. Genomic diversity and evolution of the fish pathogen Flavobacterium psychrophilum. Front Microbiol. 2018;9:138.
  • Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. Biochim Biophys Acta. 2008 Sep;1778(9):1781–1804.
  • Bielecki M, Antonyuk S, Strange RW, et al. Prevotella intermedia produces two proteins homologous to Porphyromonas gingivalis HmuY but with different heme coordination mode. Biochem J. 2020 Jan 31;477(2):381–405.
  • Bielecki M, Antonyuk S, and Strange RW, et al. Tannerella forsythia Tfo belongs to Porphyromonas gingivalis HmuY-like family of proteins but differs in heme-binding properties. Biosci Rep 2018 Oct;38(5):BSR20181325. doi:10.1042/BSR20181325.
  • Olczak T, Sroka A, Potempa J, et al. Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Arch Microbiol. 2008;189(3):197–210.
  • Sieminska K, Cierpisz P, and Smiga M, et al. Porphyromonas gingivalis HmuY and bacteroides vulgatus Bvu-A novel competitive heme acquisition strategy. Int J Mol Sci 2021 Feb 24;22(5):2237. doi:10.3390/ijms22052237.
  • Baez WD, Roy B, McNutt ZA, et al. Global analysis of protein synthesis in Flavobacterium johnsoniae reveals the use of kozak-like sequences in diverse bacteria. Nucleic Acids Res. 2019 Nov 18;47(20):10477–10488. 10.1093/nar/gkz855
  • Meheust R, Huang S, Rivera-Lugo R, et al. Post-translational flavinylation is associated with diverse extracytosolic redox functionalities throughout bacterial life. Elife. 2021 May 25;10. 10.7554/eLife.66878
  • Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nature Rev Microbiol. 2017 Jun;15(6):338–350.
  • Troxell B, Hassan HM. Transcriptional regulation by Ferric uptake regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol. 2013;3:59.
  • Dent AT, Mourino S, Huang W, et al. Post-Transcriptional regulation of the Pseudomonas aeruginosa heme assimilation system (Has) fine-tunes extracellular heme sensing. J Biol Chem. 2019 Feb 22;294(8):2771–2785.
  • Rochat T, Bouloc P, Repoila F. Gene expression control by selective RNA processing and stabilization in bacteria. FEMS Microbiol Lett. 2013 Jul;344(2):104–113.
  • Obana N, Shirahama Y, Abe K, et al. Stabilization of Clostridium perfringens collagenase mRNA by VR-RNA-dependent cleavage in 5’ leader sequence. Mol Microbiol. 2010;77(6):1416–1428.
  • Levipan HA, Avendano-Herrera R. Different phenotypes of mature biofilm in Flavobacterium psychrophilum share a potential for virulence that differs from planktonic state. Front Cell Infect Microbiol. 2017;7:76.
  • Morro B, Doherty MK, Balseiro P, et al. Plasma proteome profiling of freshwater and seawater life stages of rainbow trout (Oncorhynchus mykiss). PLoS One. 2020;15(1):e0227003.
  • Ascenzi P, di Masi A, Leboffe L, et al. Structural biology of bacterial haemophores. Adv Microb Physiol. 2015;67:127–176.
  • Izadi-Pruneyre N, Huche F, Lukat-Rodgers GS, et al. The heme transfer from the soluble HasA hemophore to its membrane-bound receptor HasR is driven by protein-protein interaction from a high to a lower affinity binding site. J Biol Chem. 2006 Sep 1;281(35):25541–25550.
  • Press CM, Evensen Ø. The morphology of the immune system in teleost fishes. Fish & Shellfish Immunol. 1999 1999/05/01/;9(4): 309–318.
  • Martinez FJ, Garcia-Riera MP, Ganteras M, et al. Blood parameters in rainbow trout (Oncorhynchus mykiss): Simultaneous influence of various factors. Comp Biochem Physiol Part A: Physiol. 1994 1994/01/01/;107(1):95–100.
  • Anzaldi LL, Skaar EP. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun. 2010 Dec;78(12):4977–4989.
  • Otero-Asman JR, Garcia-Garcia AI, Civantos C, et al. Pseudomonas aeruginosa possesses three distinct systems for sensing and using the host molecule haem. Environ Microbiol. 2019;21(12):4629–4647.
  • Smith AD, Wilks A. Differential contributions of the outer membrane receptors PhuR and HasR to heme acquisition in Pseudomonas aeruginosa. J Biol Chem. 2015 Mar 20;290(12):7756–7766. 10.1074/jbc.M114.633495
  • Bracken CS, Baer MT, Abdur-Rashid A, et al. Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function. J Bacteriol. 1999;181(19):6063–6072.
  • Fusco WG, Choudhary NR, Council SE, et al. Mutational analysis of hemoglobin binding and heme utilization by a bacterial hemoglobin receptor. J Bacteriol. 2013;195(13):3115–3123. DOI:10.1128/JB.00199-13.
  • Liu X, Olczak T, Guo HC, et al. Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR. Infect Immun. 2006;74(2):1222–1232.
  • Gray DA, White JBR, Oluwole AO, et al. Insights into SusCD-mediated glycan import by a prominent gut symbiont. Nat Commun. 2021 Jan 4;12(1):44.
  • Wojtowicz H, Guevara T, Tallant C, et al. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis. PLoS Pathog. 2009;5(5):e1000419. DOI:10.1371/journal.ppat.1000419.
  • Castillo D, Jorgensen J, and Sundell K, et al. Genome-informed approach to identify genetic determinants of Flavobacterium psychrophilum phage susceptibility. Environ Microbiol 2021 Aug;23(8): 4185–4199. doi:10.1111/1462-2920.15593.
  • Cisar JO, Bush CA, Wiens GD. Comparative structural and antigenic characterization of genetically distinct Flavobacterium psychrophilum O-Polysaccharides. Front Microbiol. 2019;10:1041.
  • Madsen L, and Dalsgaard I. Comparative studies of Danish Flavobacterium psychrophilum isolates: ribotypes, plasmid profiles, serotypes and virulence. J Fish Dis. 2000;23(3): 211–218.
  • Ngo TP, Bartie KL, Thompson KD, et al. Genetic and serological diversity of Flavobacterium psychrophilum isolates from salmonids in United Kingdom. Vet Microbiol. 2017;201:216–224.
  • Rochat T, Fujiwara-Nagata E, Calvez S, et al. Genomic characterization of Flavobacterium psychrophilum serotypes and development of a multiplex PCR-Based serotyping scheme. Front Microbiol. 2017;8:1752.
  • Sundell K, Landor L, Nicolas P, et al. Phenotypic and genetic predictors of pathogenicity and virulence in Flavobacterium psychrophilum. Front Microbiol. 2019;10:1711.
  • Knupp C, Kiupel M, Brenden TO, et al. Host-Specific preference of some Flavobacterium psychrophilum multilocus sequence typing genotypes determines their ability to cause bacterial coldwater disease in coho salmon (Oncorhynchus kisutch). J Fish Dis. 2021;44(5):521–531.
  • Shisaka Y, Iwai Y, Yamada S, et al. Hijacking the heme acquisition system of Pseudomonas aeruginosa for the delivery of phthalocyanine as an antimicrobial. ACS Chem Biol. 2019;14(7):1637–1642.