1,119
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Comparative transcriptome combined with morphophysiological analyses revealed the molecular mechanism underlying Tetrahymena thermophila predation-induced antiphage defense in Aeromonas hydrophila

, , , , , , , & show all
Pages 1650-1665 | Received 23 Oct 2021, Accepted 16 Sep 2022, Published online: 24 Sep 2022

References

  • Erken M, Lutz C, McDougald D. The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. Microb Ecol. 2013;65(4):860–868. DOI:10.1007/s00248-013-0189-0
  • Pang MB, Jiang JW, Xie X, et al. Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep. 2015;5(1):9833. DOI:10.1038/srep09833
  • Awan F, Dong Y, Wang N, et al. The fight for invincibility: environmental stress response mechanisms and Aeromonas hydrophila. Microb Pathog. 2018;116:135–145. DOI:10.1016/j.micpath.2018.01.023
  • Dong Y, Geng J, Liu J, et al. Roles of three TonB systems in the iron utilization and virulence of the Aeromonas hydrophila Chinese epidemic strain NJ-35. Appl Microbiol Biotechnol. 2019;103(10):4203–4215. DOI:10.1007/s00253-019-09757-4
  • Matz C, Kjelleberg S. Off the hook – how bacteria survive protozoan grazing. Trends Microbiol. 2005;13(7):302–307. DOI:10.1016/j.tim.2005.05.009
  • Jousset A. Ecological and evolutive implications of bacterial defences against predators. Environ Microbiol. 2012;14(8):1830–1843. DOI:10.1111/j.1462-2920.2011.02627.x
  • Barker J, Brown MRW. Trojan-Horses of the microbial world - protozoa and the survival of bacterial pathogens in the environment. Microbiology (Reading). 1994;140(6):1253–1259. DOI:10.1099/00221287-140-6-1253
  • Denoncourt AM, Paquet VE, Charette SJ. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria. Front Microbiol. 2014;5:240. DOI:10.3389/fmicb.2014.00240
  • Rehfuss MYM, Parker CT, Brandl MT. Salmonella transcriptional signature in Tetrahymena phagosomes and role of acid tolerance in passage through the protist. Isme J. 2011;5(2):262–273. DOI:10.1038/ismej.2010.128
  • Van der Henst C, Scrignari T, Maclachlan C, et al. An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii. Isme J. 2016;10(4):897–910. DOI:10.1038/ismej.2015.165
  • Trigui H, Paquet VE, Charette SJ, et al. Packaging of Campylobacter jejuni into multilamellar bodies by the ciliate Tetrahymena pyriformis. Appl Environ Microb. 2016;82(9):2783–2790. DOI:10.1128/AEM.03921-15
  • Liu J, Dong YH, Wang NN, et al. Tetrahymena thermophila predation enhances environmental adaptation of the carp pathogenic strain Aeromonas hydrophila NJ-35. Front Cell Infect Microbiol. 2018;8:76. DOI:10.3389/fcimb.2018.00076
  • Greub G, Raoult D. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev. 2004;17(2):413–433. DOI:10.1128/CMR.17.2.413-433.2004
  • Bouyer S, Imbert C, Rodier MH, et al. Long-Term survival of Legionella pneumophila associated with Acanthamoeba castellanii vesicles. Environ Microbiol. 2007;9(5):1341–1344. DOI:10.1111/j.1462-2920.2006.01229.x
  • Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3(7):537–546. DOI:10.1038/nrmicro1180
  • Lutz C, Erken M, Noorian P, et al. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae. Front Microbiol. 2013;4:375. DOI:10.3389/fmicb.2013.00375
  • Allen PG, Dawidowicz EA. Phagocytosis in Acanthamoeba .1. A mannose receptor is responsible for the binding and phagocytosis of yeast. J Cell Physiol. 1990;145(3):508–513. DOI:10.1002/jcp.1041450317
  • Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010 May;8(5):317–327. DOI:10.1038/nrmicro2315
  • Olszak T, Latka A, Roszniowski B, et al. Phage life cycles behind bacterial biodiversity. Curr Med Chem. 2017;24(36):3987–4001. DOI:10.2174/0929867324666170413100136
  • Liu J, Gao S, Dong Y, et al. Isolation and characterization of bacteriophages against virulent Aeromonas hydrophila. BMC Microbiol. 2020;20(1):141. DOI:10.1186/s12866-020-01811-w
  • Dong Y, Li S, Zhao D, et al. IolR, a negative regulator of the myo-inositol metabolic pathway, inhibits cell autoaggregation and biofilm formation by downregulating RpmA in Aeromonas hydrophila. NPJ Biofilms Microbiomes. 2020;6(1):22. DOI:10.1038/s41522-020-0132-3
  • Abolghait SK. Suicide plasmid-dependent IS1-element untargeted integration into Aeromonas veronii bv. sobria generates brown pigment-producing and spontaneous pelleting mutant. Curr Microbiol. 2013;67(1):91–99. DOI:10.1007/s00284-013-0335-4
  • Morales VM, Backman A, Bagdasarian M. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene. 1991;97(1):39–47. DOI:10.1016/0378-1119(91)90007-x
  • Evangelopoulos D, Gupta A, Lack NA, et al. Characterisation of a putative AraC transcriptional regulator from Mycobacterium smegmatis. Tuberculosis (Edinb). 2014;94(6):664–671. DOI:10.1016/j.tube.2014.08.007
  • Liang L, Connerton IF. FlhF(T368A) modulates motility in the bacteriophage carrier state of Campylobacter jejuni. Mol Microbiol. 2018;110(4):616–633. DOI:10.1111/mmi.14120
  • Yen JY, Broadway KM, Scharf BE. Minimum requirements of flagellation and motility for infection of Agrobacterium sp. strain H13-3 by flagellotropic bacteriophage 7-7-1. Appl Environ Microbiol. 2012;78(20):7216–7222. DOI:10.1128/AEM.01082-12
  • Choi Y, Shin H, Lee JH, et al. Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5. Appl Environ Microbiol. 2013;79(16):4829–4837. DOI:10.1128/AEM.00706-13
  • Wang NN, Liu J, Pang MD, et al. Diverse roles of Hcp family proteins in the environmental fitness and pathogenicity of Aeromonas hydrophila Chinese epidemic strain NJ-35. Appl Microbiol Biotechnol. 2018;102(16):7083–7095. DOI:10.1007/s00253-018-9116-0
  • Bange G, Petzold G, Wild K, et al. The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP. Proc Natl Acad Sci U S A. 2007;104(34):13621–13625. DOI:10.1073/pnas.0702570104
  • Jurgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek. 2002;81(1/4):413–434. DOI:10.1023/a:1020505204959
  • Li P, Lin H, Mi Z, et al. Screening of polyvalent phage-resistant Escherichia coli strains based on phage receptor analysis. Front Microbiol. 2019;10:850. DOI:10.3389/fmicb.2019.00850
  • Schniederberend M, Abdurachim K, Murray TS, et al. The GTPase activity of FlhF is dispensable for flagellar localization, but not motility, in Pseudomonas aeruginosa. J Bacteriol. 2013;195(5):1051–1060. DOI:10.1128/JB.02013-12
  • Kondo S, Homma M, Kojima S. Analysis of the GTPase motif of FlhF in the control of the number and location of polar flagella in Vibrio alginolyticus. Biophys Physicobiol. 2017;14(0):173–181. DOI:10.2142/biophysico.14.0_173
  • Gulbronson CJ, Ribardo DA, Balaban M, et al. FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni. Mol Microbiol. 2016;99(2):291–306. DOI:10.1111/mmi.13231
  • Gao T, Shi MM, Ju LL, et al. Investigation into FlhFG reveals distinct features of FlhF in regulating flagellum polarity in S hewanella oneidensis. Mol Microbiol. 2015;98(3):571–585. DOI:10.1111/mmi.13141
  • Guerrero-Ferreira RC, Viollier PH, Ely B, et al. Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. Proc Natl Acad Sci U S A. 2011;108(24):9963–9968. DOI:10.1073/pnas.1012388108
  • Josenhans C, Vossebein L, Friedrich S, et al. The neuA / flmD gene cluster of Helicobacter pylori is involved in flagellar biosynthesis and flagellin glycosylation. FEMS Microbiol Lett. 2002;210(2):165–172. DOI:10.1111/j.1574-6968.2002.tb11176.x
  • Wilhelms M, Fulton KM, Twine SM, et al. Differential glycosylation of polar and lateral flagellins in Aeromonas hydrophila AH-3. J Biol Chem. 2012;287(33):27851–27862. DOI:10.1074/jbc.M112.376525
  • Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016;363(4):fnw002. DOI:10.1093/femsle/fnw002
  • Rostol JT, Marraffini L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe. 2019;25(2):184–194. DOI:10.1016/j.chom.2019.01.009
  • Gill JJ, Sabour PM, Leslie KE, et al. Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J Appl Microbiol. 2006;101(2):377–386. DOI:10.1111/j.1365-2672.2006.02918.x
  • Salvetti S, Ghelardi E, Celandroni F, et al. FlhF, a signal recognition particle-like GTPase, is involved in the regulation of flagellar arrangement, motility behaviour and protein secretion in Bacillus cereus. Microbiology (Reading). 2007;153(8):2541–2552. DOI:10.1099/mic.0.2006/005553-0
  • Zanen G, Antelmann H, Meima R, et al. Proteomic dissection of potential signal recognition particle dependence in protein secretion byBacillus subtilis. Proteomics. 2006;6(12):3636–3648. DOI:10.1002/pmic.200500560
  • Sijbrandi R, Urbanus ML, ten Hagen-Jongman CM, et al. Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J Biol Chem. 2003;278(7):4654–4659. DOI:10.1074/jbc.M211630200
  • Mazzantini D, Celandroni F, Salvetti S, et al. FIhF is required for swarming motility and full pathogenicity of Bacillus cereus. Front Microbiol. 2016;7:1644. DOI:10.3389/fmicb.2016.01644
  • Mougous JD, Cuff ME, Raunser S, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 2006;312(5779):1526–1530. DOI:10.1126/science.1128393