9,021
Views
19
CrossRef citations to date
0
Altmetric
Signature Reviews

Pathogenicity and virulence of Clostridioides difficile

ORCID Icon & ORCID Icon
Article: 2150452 | Received 18 Jul 2022, Accepted 17 Nov 2022, Published online: 04 Jan 2023

References

  • Adams CM, Eckenroth BE, Putnam EE, et al. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog. 2013;9(2):e1003165.
  • ECDC, n.d. Clostridium difficile infections - facts and surveillance [WWW Document]. European Centre for Disease Prevention and Control [cited 2022 Mar 22]. Available from https://www.ecdc.europa.eu/en/Clostridium-difficile-infections/facts
  • Liao F, Li W, Gu W, et al. A retrospective study of community-acquired Clostridium difficile infection in southwest China. Sci Rep. 2018;8(1):1–25.
  • Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nature rev Microbiol. 2009;7(7):526–536.
  • Cole SA, Stahl TJ. Persistent and recurrent Clostridium difficile colitis. Clin Colon Rectal Surg. 2015;28(02):65–69.
  • Napolitano LM, Edmiston CE. Clostridium difficile disease: diagnosis, pathogenesis, and treatment update. Surgery. 2017;162(2):325–348.
  • Lawley TD, Clare S, Walker AW, et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 2012;8(10):e1002995.
  • Owens RC, Donskey CJ, Gaynes RP, et al. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis. 2008;46(s1):S19–31.
  • Song JH, Kim YS. Recurrent Clostridium difficile infection: risk factors, treatment, and prevention. Gut Liver. 2019;13(1):16–24.
  • CDC, 2019. Antibiotic-resistant Germs: new threats [WWW Document].Centers for Disease Control and Prevention [cited 2020 Oct 29]. Available from https://www.cdc.gov/drugresistance/biggest-threats.html
  • He M, Miyajima F, Roberts P, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013;45(1):109–113.
  • Curry SR, Marsh JW, Muto CA, et al. tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J Clin Microbiol. 2007;45(1):215–221.
  • Spigaglia P, Mastrantonio P. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol. 2002;40(9):3470–3475.
  • Warny M, Pepin J, Fang A, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005;366(9491):1079–1084.
  • Gerding DN, Johnson S, Rupnik M, et al. Clostridium difficile binary toxin CDT. Gut Microbes. 2014;5(1):15–27.
  • Razavi B, Apisarnthanarak A, Mundy LM. Clostridium difficile: emergence of hypervirulence and fluoroquinolone resistance. Infection. 2007;35(5):300.
  • Mansfield MJ, Tremblay BJ-M, Zeng J, et al. Phylogenomics of 8,839 Clostridioides difficile genomes reveals recombination-driven evolution and diversification of toxin a and B. PLoS Pathog. 2020;16(12):e1009181.
  • U PHE. 2018. Clostridium difficile infection: mandatory surveillance 2017/18 summary of the mandatory surveillance annual epidemiological commentary 2017/18.
  • GOV.UK, n.d. Clostridioides difficile: guidance, data and analysis [WWW Document]. [cited 2022 Mar 3]. Available from https://www.gov.uk/government/collections/Clostridium-difficile-guidance-data-and-analysis
  • Lessa FC, Mu Y, Bamberg WM, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825–834.
  • Heimann SM, Cruz Aguilar MR, Mellinghof S, et al. Economic burden and cost-effective management of Clostridium difficile infections. Médecine et maladies infectieuses. 2018;48(1):23–29.
  • Reigadas Ramírez E, Bouza ES. Economic burden of Clostridium difficile infection in European Countries. Adv Exp Med Biol. 2018;1050:1–12.
  • Roldan GA, Cui AX, Pollock NR. Assessing the burden of Clostridium difficile infection in low- and middle-income countries. J Clin Microbiol. 2018;56(3). DOI:10.1128/JCM.01747-17
  • Rajabally YA, Afzal S. Clinical and economic comparison of an individualised immunoglobulin protocol vs. standard dosing for chronic inflammatory demyelinating polyneuropathy. J Neurol. 2019;266(2):461–467.
  • Paredes-Sabja D, Shen A, Sorg JA. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol. 2014;22(7):406–416.
  • Coullon H, Candela T. Clostridioides difficile peptidoglycan modifications. Curr Opin Microbiol. 2022;65:156–161.
  • Janganan TK, Mullin N, Dafis-Sagarmendi A, et al. Architecture and self-assembly of Clostridium sporogenes and Clostridium botulinum spore surfaces illustrate a general protective strategy across spore formers. mSphere. 2020;5(4). DOI:10.1128/mSphere.00424-20
  • Deakin LJ, Clare S, Fagan RP, et al. The Clostridium difficile spo0a gene is a persistence and transmission factor. Infect Immun. 2012;80(8):2704–2711.
  • MacLeod-Glover N, Sadowski C Efficacy of cleaning products for C. difficile: environmental strategies to reduce the spread of Clostridium difficile-associated diarrhea in geriatric rehabilitation. Can Fam Physician. 2010 56(5):417–423.
  • Rodriguez-Palacios A, LeJeune JT. Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile. Appl Environ Microbiol. 2011;77(9):3085–3091.
  • Murray SG, Yim JWL, Croci R, et al. Using spatial and temporal mapping to identify nosocomial disease transmission of Clostridium difficile. JAMA Intern Med. 2017;177(12):1863–1865.
  • Burns DA, Heeg D, Cartman ST, et al. Reconsidering the sporulation characteristics of hypervirulent Clostridium difficile BI/NAP1/027. PLoS One. 2011;6(9):e24894.
  • Merrigan M, Venugopal A, Mallozzi M, et al. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol. 2010;192(19):4904–4911.
  • Donnelly ML, Fimlaid KA, Shen A. Characterization of Clostridium difficile spores lacking either SpoVAC or dipicolinic acid synthetase. J Bacteriol. 2016;198(11):1694–1707.
  • Setlow P. I will survive: DNA protection in bacterial spores. Trends Microbiol. 2007;15(4):172–180.
  • Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol. 2006;101(3):514–525.
  • Nerber HN, Sorg JA, McClane BA. The small acid-soluble proteins of Clostridioides difficile are important for UV resistance and serve as a check point for sporulation. PLoS Pathog. 2021;17(9):e1009516.
  • Lee CD, Rizvi A, Edwards AN, et al. Genetic mechanisms governing sporulation initiation in Clostridioides difficile. Curr Opin Microbiol. 2022;66:32–38.
  • Shen A. Clostridioides difficile spore formation and germination: new insights and opportunities for intervention. Annu Rev Microbiol. 2020;74(1):545–566.
  • Battistuzzi FU, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol. 2004;4(1):44.
  • Ramos-Silva P, Serrano M, Henriques AO. From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile. Mol Biol Evol. 2019;36(12):2714–2736.
  • Fimlaid KA, Bond JP, Schutz KC, et al. Global analysis of the sporulation pathway of Clostridium difficile. PLoS Gene. 2013;9(8):e1003660.
  • Edwards AN, Wetzel D, DiCandia MA, et al. Three orphan Histidine kinases inhibit Clostridioides difficile sporulation. J Bacteriol. 2022;204(5). DOI:10.1128/jb.00106-22
  • Martins D, DiCandia MA, Mendes AL, et al. CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile. Sci Rep. 2021;11(1):1–15.
  • Nawrocki KL, Edwards AN, Daou N, et al. CodY-dependent regulation of sporulation in Clostridium difficile. J Bacteriol. 2016;198(15):2113–2130.
  • Wetzel D, McBride SM. The impact of pH on Clostridioides difficile sporulation and physiology. Appl Environ Microbiol. 2019. DOI:10.1128/AEM.02706-19
  • Antunes A, Camiade E, Monot M, et al. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res. 2012;40(21):10701–10718.
  • Edwards AN, Tamayo R, McBride SM. A novel regulator controls Clostridium difficile sporulation, motility and toxin production. Mol Microbiol. 2016;100(6):954–971.
  • Rocha-Estrada J, Aceves-Diez AE, Guarneros G, et al. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol. 2010;87(3):913–923.
  • Dembek M, Barquist L, Boinett CJ, et al. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. MBio. 2015;6(2). DOI:10.1128/mBio.02383-14
  • Oliveira PH, Ribis JW, Garrett EM, et al. Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nat Microbiol. 2020;5(1):166–180.
  • Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol. 2008;190(7):2505–2512.
  • Gerskowitch VP, Russell RI. The physiology of bile acids in duodenum and jejunum. Scott Med J. 1973;18(5):138–141.
  • de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17(5):657–669.
  • Kevorkian Y, Shen A, Schneewind O. Revisiting the role of Csp family proteins in regulating Clostridium difficile spore germination. J Bacteriol. 2017;199(22). DOI:10.1128/JB.00266-17
  • Francis MB, Sorg JA, Limbago BM. Dipicolinic acid release by germinating Clostridium difficile spores occurs through a mechanosensing mechanism. mSphere. 2016;1(6). DOI:10.1128/mSphere.00306-16
  • Britton RA, Young VB. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 2012;20(7):313–319.
  • Pike CM, Theriot CM. Mechanisms of colonization resistance against Clostridioides difficile. J Infect Dis. 2020;223(Supplement_3):S194–200.
  • Dembek M, Stabler RA, Witney AA, et al. Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores. PLoS One. 2013;8(5):e64011.
  • Lawley TD, Clare S, Walker AW, et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun. 2009;77(9):3661–3669.
  • Castro-Córdova P, Mora-Uribe P, Reyes-Ramírez R, et al. Entry of spores into intestinal epithelial cells contributes to recurrence of Clostridioides difficile infection. Nat Commun. 2021;12(1):1–18.
  • Burke KE, Lamont JT. Clostridium difficile infection: a worldwide disease. Gut Liver. 2014;8(1):1–6.
  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–635.
  • Kelly CP, Kyne L. The host immune response to Clostridium difficile. J Med Microbiol. 2011;60(8):1070–1079.
  • Jank T, Aktories K. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol. 2008;16(5):222–229.
  • Bouillaut L, Dubois T, Sonenshein AL, et al. Integration of metabolism and virulence in Clostridium difficile. Res Microbiol. 2015;166(4):375–383. DOI:10.1016/j.resmic.2014.10.002.
  • Donnelly ML, Shrestha S, Ribis JW, et al. Development of a dual-fluorescent-reporter system in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. mSphere. 2022;7(3). DOI:10.1128/msphere.00132-22
  • Govind R, Fitzwater L, Nichols R. Observations on the role of TcdE isoforms in Clostridium difficile toxin secretion. J Bacteriol. 2015;197(15):2600–2609.
  • Mani N, Dupuy B. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci USA. 2001;98(10):5844–5849.
  • Matamouros S, England P, Dupuy B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol. 2007;64(5):1274–1288.
  • Majumdar A, Govind R. Regulation of Clostridioides difficile toxin production. Curr Opin Microbiol. 2022;65:95–100.
  • Pruitt RN, Chambers MG, Ng KK-S, et al., 2010. Structural organization of the functional domains of Clostridium difficile toxins a and B. Proceedings of the National Academy of Sciences 107, 13467–13472. 10.1073/pnas.1002199107
  • Hartley-Tassell LE, Awad MM, Seib KL, et al. Lectin activity of the TcdA and TcdB toxins of Clostridium difficile. Infect Immun. 2018;87(3). DOI:10.1128/IAI.00676-18
  • Pothoulakis C, Gilbert RJ, Cladaras C, et al. Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium difficile toxin a. J Clin Invest. 1996;98(3):641–649.
  • Na X, Kim H, Moyer M, et al. gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infection and immunity. 2008;76(7): 2862–2871.
  • Tao L, Tian S, Zhang J, et al. Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin a entry into cells. Nat Microbiol. 2019;4(10):1760–1769.
  • Schöttelndreier D, Langejürgen A, Lindner R, et al. Low density Lipoprotein Receptor-related Protein-1 (LRP1) is involved in the uptake of Clostridioides difficile toxin a and serves as an internalizing receptor. Front Cell Infect Microbiol. 2020;10. DOI:10.3389/fcimb.2020.565465.
  • Pan Z, Zhang Y, Luo J, et al. Functional analyses of epidemic Clostridioides difficile toxin B variants reveal their divergence in utilizing receptors and inducing pathology. PLoS Pathog. 2021;17(1):e1009197.
  • Yuan P, Zhang H, Cai C, et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 2015;25(2):157–168.
  • Chen P, Zeng J, Liu Z, et al. Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection. Nat Commun. 2021;12(1):1–13.
  • Jiang M, Shin J, Simeon R, et al. Structural dynamics of receptor recognition and pH-induced dissociation of full-length Clostridioides difficile Toxin B. PLoS Biol. 2022;20(3):e3001589.
  • Terada N, Ohno N, Murata S, et al. Immunohistochem-ical study of NG2 chondroitin sulfate proteoglycan expression in the small and large intestines. Histochem Cell Biol. 2006;126(4):483–490.
  • LaFrance ME, Farrow MA, Chandrasekaran R, et al. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity. Proceedings of the National Academy of Sciences. 2015;112(22):7073–7078.
  • Tao L, Zhang J, Meraner P, et al. Frizzled are colonic epithelial receptors for Clostridium difficile toxin B. Nature. 2016;538(7625):350–355.
  • Chen P, Tao L, Wang T, et al. Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B. Science. 2018;360(6389):664–669.
  • Luo J, Yang Q, Zhang X, et al. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell. 2022;185(6):980–994.e15.
  • Papatheodorou P, Zamboglou C, Genisyuerek S, et al. Clostridial glucosylating toxins enter cells via Clathrin-mediated endocytosis. PLoS One. 2010;5.(5):e10673.
  • Barth H, Pfeifer G, Hofmann F, et al. Low pH-induced formation of ion channels by Clostridium difficile toxin B in target cells. J Biol Chem. 2001;276(14):10670–10676.
  • Qa’Dan M, Spyres LM, Ballard JD. pH-induced conformational changes in Clostridium difficile toxin B. Infect Immun. 2000;68(5):2470–2474.
  • Egerer M, Giesemann T, Herrmann C, et al. Autocatalytic Processing of Clostridium difficile toxin B: binding of inositol hexakisphosphate*. J Biol Chem. 2009;284:3389–3395.
  • Oezguen N, Power TD, Urvil P, et al. Clostridial toxins. Gut Microbes. 2012;3(1):35–41.
  • Bilverstone TW, Garland M, Cave RJ, et al. The glucosyltransferase activity of C. difficile toxin B is required for disease pathogenesis. PLoS Pathog. 2020;16(9):e1008852.
  • Jank T, Giesemann T, Aktories K. Rho-glucosylating Clostridium difficile toxins a and B: new insights into structure and function. Glycobiology. 2007;17(4):15R–22R.
  • Just I, Selzer J, Wilm M, et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature. 1995;375(6531):500–503.
  • Gerhard R, Nottrott S, Schoentaube J, et al. Glucosylation of Rho GTPases by Clostridium difficile toxin a triggers apoptosis in intestinal epithelial cells. J Med Microbiol. 2008;57(6):765–770.
  • Janoir C, 2016 37 13–24 . Virulence factors of Clostridium difficile and their role during infection. Anaerobe [].
  • Voth DE, Ballard JD. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev. 2005;18(2):247–263.
  • Madan R, Petri WA. Immune responses to Clostridium difficile infection. Trends Mol Med. 2012;18(11):658–666.
  • Lyerly DM, Lockwood DE, Richardson SH, et al. Biological activities of toxins A and B of Clostridium difficile. Infect Immun. 1982;35(3):1147–1150.
  • Drudy D, Fanning S, Kyne L. Toxin A-negative, toxin B-positive Clostridium difficile. Inter J Infect Dis. 2007;11(1):5–10.
  • Kuehne SA, Collery MM, Kelly ML, et al. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J Infect Dis. 2014;209(1):83–86.
  • Carter GP, Chakravorty A, Nguyen TAP, et al. Defining the Roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. MBio. 2015;6(3). DOI:10.1128/mBio.00551-15
  • Li Z, Lee K, Rajyaguru U, et al. Ribotype classification of Clostridioides difficile isolates is not predictive of the amino acid sequence diversity of the toxin virulence factors TcdA and TcdB. Front Microbiol. 2020;11. DOI:10.3389/fmicb.2020.01310
  • Shen W-J, Deshpande A, Hevener KE, et al. Constitutive expression of the cryptic vanGcd operon promotes vancomycin resistance in Clostridioides difficile clinical isolates. J Antimicrob Chemother. 2020;75(4):859–867.
  • Govind R, Vediyappan G, Rolfe RD, et al. Evidence that Clostridium difficile TcdC is a membrane-associated protein. J Bacteriol. 2006;188(10):3716–3720.
  • Carter GP, Douce GR, Govind R, et al. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. PLoS Pathog. 2011;7(10):e1002317.
  • Paiva AMO, Jong LD, Friggen AH, et al. The C-terminal domain of Clostridioides difficile TcdC is exposed on the bacterial cell surface. J Bacteriol. 2020. DOI:10.1128/JB.00771-19
  • Loo VG, Poirier L, Miller MA, et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile–associated diarrhea with high morbidity and mortality. N Engl J Med. 2005;353(23):2442–2449.
  • Anderson DM, Sheedlo MJ, Jensen JL, et al. Structural insights into the transition of Clostridioides difficile binary toxin from prepore to pore. Nat Microbiol. 2020;5(1):102–107.
  • Xu X, Godoy-Ruiz R, Adipietro KA, et al., 2020. Structure of the cell-binding component of the Clostridium difficile binary toxin reveals a di-heptamer macromolecular assembly. Proceedings of the National Academy of Sciences 117, 1049–1058. 10.1073/pnas.1919490117
  • Papatheodorou P, Carette JE, Bell GW, et al. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A. 2011;108(39):16422–16427.
  • Hemmasi S, Czulkies BA, Schorch B, et al. Interaction of the Clostridium difficile binary toxin CDT and its host cell receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR). J Biol Chem. 2015;290(22):14031–14044.
  • Ernst K, Langer S, Kaiser E, et al. Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylated toxins. J Mol Biol Elucidation Protein Translocation Pathways (Part II). 2015;427(6):1224–1238.
  • Aktories K, Lang AE, Schwan C, et al. Actin as target for modification by bacterial protein toxins. FEBS J. 2011;278(23):4526–4543.
  • Schwan C, Stecher B, Tzivelekidis T, et al. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog. 2009;5(10):e1000626.
  • Akhmanova A, Steinmetz MO. Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol. 2015;16(12):711–726.
  • Schwan C, Kruppke AS, Nölke T, et al. Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc Natl Acad Sci U S A. 2014;111(6):2313–2318.
  • Lyon SA, Hutton ML, Rood JI, et al. CdtR regulates TcdA and TcdB production in Clostridium difficile. PLoS Pathog. 2016;12(7):e1005758.
  • Carter GP, Lyras D, Allen DL, et al. Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. J Bacteriol. 2007;189(20):7290–7301.
  • Eckert C, Emirian A, Le Monnier A, et al. Prevalence and pathogenicity of binary toxin–positive Clostridium difficile strains that do not produce toxins a and B. New Microbes New Infect. 2015;3:12–17.
  • Cowardin CA, Buonomo EL, Saleh MM, et al. The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat Microbiol. 2016;1(8):1–10.
  • Marquardt I, Jakob J, Scheibel J, et al. Clostridioides difficile toxin CDT induces cytotoxic responses in human mucosal-associated invariant T (MAIT) cells. Front Microbiol. 2021;12. DOI:10.3389/fmicb.2021.752549.
  • Dingle KE, Didelot X, Ansari MA, et al. Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. J Infect Dis. 2013;207:675–686.
  • Fagan RP, Fairweather NF. Biogenesis and functions of bacterial S-layers. Nature rev Microbiol. 2014;12(3):211–222.
  • Calabi E, Ward S, Wren B, et al. Molecular characterization of the surface layer proteins from Clostridium difficile. Mol Microbiol. 2001;40(5):1187–1199.
  • Fagan RP, Albesa-Jové D, Qazi O, et al. Structural insights into the molecular organization of the S-layer from Clostridium difficile. Mol Microbiol. 2009;71(5):1308–1322.
  • Mori N, Takahashi T. Characteristics and immunological roles of surface layer proteins in Clostridium difficile. Ann Lab Med. 2018;38(3):189–195.
  • Kirk JA, Gebhart D, Buckley AM, et al. New Class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci Transl Med. 2017;9(406). DOI:10.1126/scitranslmed.aah6813
  • Calabi E, Calabi F, Phillips AD, et al. Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun. 2002;70(10):5770–5778.
  • Merrigan MM, Venugopal A, Roxas JL, et al. Surface-layer protein a (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PLoS One. 2013;8(11):e78404.
  • Willing SE, Candela T, Shaw HA, et al. Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII. Mol Microbiol. 2015;96(3):596–608.
  • Knight DR, Elliott B, Chang BJ, et al. Diversity and evolution in the genome of Clostridium difficile. Clin Microbiol Rev. 2015;28(3):721–741.
  • Wright A, Drudy D, Kyne L, et al. Immunoreactive cell wall proteins of Clostridium difficile identified by human sera. J Med Microbiol. 2008;57(6):750–756. n.d. DOI:10.1099/jmm.0.47532-0.
  • Bradshaw WJ, Kirby JM, Roberts AK, et al. Cwp2 from Clostridium difficile exhibits an extended three domain fold and cell adhesion in vitro. FEBS J. 2017;284(17):2886–2898.
  • Kirby JM, Ahern H, Roberts AK, et al. Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J Biol Chem. 2009;284(50):34666–34673.
  • Waligora A-J, Hennequin C, Mullany P, et al. Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect Immun. 2001;69(4):2144–2153.
  • Zhou Q, Rao F, Chen Z, et al. The cwp66 gene affects cell adhesion, stress tolerance, and antibiotic resistance in Clostridioides difficile. Microbiol Spectr. 2022;10(2). DOI:10.1128/spectrum.02704-21
  • Peltier J, Courtin P, El Meouche I, et al. Clostridium difficile has an original peptidoglycan structure with a high level of N-Acetylglucosamine deacetylation and mainly 3-3 cross-links. J Biol Chem. 2011;286(33):29053–29062.
  • Zhu D, Bullock J, He Y, et al. Cwp22, a novel peptidoglycan cross-linking enzyme, plays pleiotropic roles in Clostridioides difficile. Environ Microbiol. 2019;21(8):3076–3090.
  • Wydau-Dematteis S, Meouche IE, Courtin P, et al. Cwp19 is a novel lytic transglycosylase involved in stationary-phase autolysis resulting in toxin release in Clostridium difficile. MBio. 2018;9(3). DOI:10.1128/mBio.00648-18
  • Emerson JE, Reynolds CB, Fagan RP, et al. A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein. Mol Microbiol. 2009;74(3):541–556.
  • Dembek M, Reynolds CB, Fairweather NF. Clostridium difficile cell wall protein CwpV undergoes enzyme-independent intramolecular autoproteolysis. J Biol Chem. 2012;287(2):1538–1544.
  • Reynolds CB, Emerson JE, de la Riva L, et al. The Clostridium difficile cell wall protein CwpV is antigenically variable between strains, but exhibits conserved aggregation-promoting function. PLoS Pathog. 2011;7(4):e1002024.
  • Arato V, Gasperini G, Giusti F, et al. Dual role of the colonization factor CD2831 in Clostridium difficile pathogenesis. Sci Rep. 2019;9(1):1–12.
  • Tulli L, Marchi S, Petracca R, et al. CbpA: a novel surface exposed adhesin of Clostridium difficile targeting human collagen. Cell Microbiol. 2013;15:1674–1687.
  • Ragland SA, Criss AK, Bliska JB. From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoS Pathog. 2017;13(9):e1006512.
  • Lanzoni-Mangutchi P, Banerji O, Wilson J, et al. Structure and assembly of the S-layer in C. difficile. Nat Commun. 2022;13(1):1–13.
  • Ho TD, Williams KB, Chen Y, et al. Clostridium difficile extracytoplasmic function σ factor σV regulates lysozyme resistance and is necessary for pathogenesis in the hamster model of infection. Infect Immun. 2014;82(6):2345–2355.
  • Kaus GM, Snyder LF, Müh U, et al. Lysozyme resistance in C. difficile is dependent on two peptidoglycan deacetylases. bioRxiv. 2020. DOI:10.1101/2020.07.17.209676
  • Callewaert L, Michiels CW, 2010 35 127–160 . Lysozymes in the animal kingdom. J Biosci.].
  • Chilton CH, Pickering DS, Freeman J. Microbiologic factors affecting Clostridium difficile recurrence. Clin Microbiol Infect. 2018;24(5):476–482.
  • Frost LR, Cheng JKJ, Unnikrishnan M. Clostridioides difficile biofilms: a mechanism of persistence in the gut? PLoS Pathog. 2021;17(3):e1009348.
  • Ðapa T, Ng R, Leuzzi YK, et al. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol. 2012;195(3):545–555.
  • Bordeleau E, Purcell EB, Lafontaine DA, et al. Cyclic Di-GMP Riboswitch-regulated Type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol. 2014;197(5):819–832.
  • Poquet I, Saujet L, Canette A, et al. Clostridium difficile biofilm: remodeling metabolism and cell surface to build a sparse and heterogeneously aggregated architecture. Front Microbiol. 2018;9. DOI:10.3389/fmicb.2018.02084
  • Jain S, Smyth D, O’Hagan BMG, et al. Inactivation of the dnaK gene in Clostridium difficile 630 δerm yields a temperature-sensitive phenotype and increases biofilm-forming ability. Sci Rep. 2017;7(1):1–13.
  • Walter BM, Cartman ST, Minton NP, et al. The SOS response master regulator LexA is associated with sporulation, motility and biofilm formation in Clostridium difficile. PLoS One. 2015;10(12):e0144763.
  • Taggart MG, Snelling WJ, Naughton PJ, et al. Biofilm regulation in Clostridioides difficile: novel systems linked to hypervirulence. PLoS Pathog. 2021;17(9):e1009817.
  • Soavelomandroso AP, Gaudin F, Hoys S, et al. Biofilm structures in a mono-associated mouse model of Clostridium difficile infection. Front Microbiol. 2017;8. DOI:10.3389/fmicb.2017.02086
  • Semenyuk EG, Poroyko VA, Johnston PF, et al. Analysis of bacterial communities during Clostridium difficile infection in the mouse. Infect Immun. 2015;83(11):4383–4391.
  • Dawson LF, Valiente E, Faulds-Pain A, et al. Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One. 2012;7(12):e50527.
  • Boekhoud IM, Hornung BVH, Sevilla E, et al. Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat Commun. 2020;11(1):1–12.
  • Deshpande A, Wu X, Huo W, et al. Chromosomal resistance to metronidazole in Clostridioides difficile can be mediated by epistasis between iron homeostasis and oxidoreductases. Antimicrob Agents Chemother. 2020;64(8). bioRxiv 2020.03.04.977868. DOI:10.1101/2020.03.04.977868.
  • Leeds JA, Sachdeva M, Mullin S, et al. In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin. J Antimicrob Chemother. 2014;69(1):41–44.
  • Sassi M, Guérin F, Lesec L, et al. Genetic characterization of a VanG-type vancomycin-resistant Enterococcus faecium clinical isolate. J Antimicrob Chemother. 2018;73(4):852–855.
  • Pu M, Cho JM, Cunningham SA, et al. Plasmid acquisition alters vancomycin susceptibility in Clostridioides difficile. Gastroenterology. 2021;160(3):941–945.e8.
  • Wasels F, Kuehne SA, Cartman ST, et al. Fluoroquinolone resistance does not impose a cost on the fitness of Clostridium difficile in vitro. Antimicrob Agents Chemother. 2015;59(3):1794–1796.
  • Ducarmon QR, Zwittink RD, Hornung BVH, et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev. 2019;83(3). DOI:10.1128/MMBR.00007-19
  • Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205–208.
  • Stevens V, Dumyati G, Fine LS, et al. Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis. 2011;53(1):42–48.
  • Webb BJ, Subramanian A, Lopansri B, et al. Antibiotic exposure and risk for hospital-associated Clostridioides difficile infection. Antimicrob Agents Chemother. 2020;64(4). DOI:10.1128/AAC.02169-19
  • Buffie CG, Jarchum I, Equinda M, et al. Profound alterations of intestinal microbiota following a single dose of Clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun. 2011;80(1):62–73.
  • Gómez S, Chaves F, Orellana MA. Clinical, epidemiological and microbiological characteristics of relapse and re-infection in Clostridium difficile infection. Anaerobe. 2017;48:147–151.
  • Nicholson MR, Thomsen IP, Slaughter JC, et al. Novel risk factors for recurrent Clostridium difficile infection in children. J Pediatr Gastroenterol Nutr. 2015;60(1):18–22.
  • Peng Z, Jin D, Kim HB, et al. Update on antimicrobial resistance in Clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing. J Clin Microbiol. 2017;55(7):1998–2008.
  • Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Advances Infect. 2016;3(1):23–42.
  • Farrow KA, Lyras D, Rood JI. The macrolide-lincosamide-streptogramin B resistance determinant from Clostridium difficile 630 contains two erm(b) genes. Antimicrob Agents Chemother. 2000;44(2):411–413.
  • Dzyubak E, Yap M-NF. The expression of antibiotic resistance methyltransferase correlates with mRNA stability independently of ribosome stalling. Antimicrob Agents Chemother. 2016;60(12):7178–7188.
  • Spigaglia P, Barbanti F, Mastrantonio P, et al. Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother. 2011;66(10):2227–2234. DOI:10.1093/jac/dkr292.
  • Dong D, Chen X, Jiang C, et al. Genetic analysis of Tn916-like elements conferring tetracycline resistance in clinical isolates of Clostridium difficile. Int J Antimicrob Agents. 2014;43(1):73–77.
  • Dridi L, Tankovic J, Burghoffer B, et al. gyrA and gyrB mutations are implicated in cross-resistance to Ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother. 2002;46(11):3418–3421.
  • Cruz MP Fidaxomicin (Dificid), a novel oral macrocyclic antibacterial agent for the treatment of Clostridium difficile-associated diarrhea in adults. P T. 2012 37(5):278–281.
  • Nelson RL, Suda KJ, Evans CT. Antibiotic treatment for Clostridium difficile -associated diarrhoea in adults. Cochrane Database Syst Rev. 2017;2017(3). DOI:10.1002/14651858.CD004610.pub5
  • NICE, 2021. Recommendations | Clostridioides difficile infection: antimicrobial prescribing | Guidance | NICE [WWW Document]. [cited 2022 Apr 13] Available from https://www.nice.org.uk/guidance/ng199/chapter/Recommendations
  • Banawas SS, 2018 8414257 . Clostridium difficile infections: a Global overview of drug sensitivity and resistance mechanisms [WWW Document]. BioMed Research International []
  • Lynch T, Chong P, Zhang J, et al. Characterization of a stable, metronidazole-resistant Clostridium difficile clinical isolate. PLoS One. 2013;8(1):e53757.
  • Lin W, Das K, Degen D, et al. Structural basis of transcription inhibition by fidaxomicin (lipiarmycin a3). Mol Cell. 2018;70(1):60–71.e15.
  • Venugopal AA, Johnson S. Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of Clostridium difficile infection. Clin Infect Dis. 2012;54(4):568–574.
  • Schwanbeck J, Riedel T, Laukien F, et al. Characterization of a clinical Clostridioides difficile isolate with markedly reduced fidaxomicin susceptibility and a V1143D mutation in rpoB. J Antimicrob Chemother. 2019;74(1):6–10.
  • Patel S, Preuss CV, Bernice F. Vancomycin in: StatPearls. StatPearls Publishing, Treasure Island (FL); 2020.
  • Saha S, Kapoor S, Tariq R, et al. Increasing antibiotic resistance in Clostridioides difficile: a systematic review and meta-analysis. Anaerobe. 2019;58:35–46. ASA2018: DOI:10.1016/j.anaerobe.2019.102072.
  • Sebaihia M, Wren BW, Mullany P, et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet. 2006;38(7):779–786.
  • Darkoh C, Keita K, Odo C, et al. Emergence of Clinical Clostridioides difficile isolates with decreased susceptibility to vancomycin. Clin Infect Dis. 2022;74(1):120–126.
  • Lee WJ, Lattimer LDN, Stephen S, et al. Fecal microbiota transplantation: a review of emerging indications beyond relapsing Clostridium difficile toxin colitis. Gastroenterol Hepatol (N Y). 2015 11(1):24–32.
  • Basson AR, Zhou Y, Seo B, et al. Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Transl Res. 2020;226:1–11.
  • Quraishi MN, Widlak M, Bhala N, et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther. 2017;46(5):479–493.
  • van Nood E, Vrieze A, Nieuwdorp M et al, et al., 2013 368 5 407–415 . Duodenal infusion of donor feces for recurrent Clostridium difficile []. [].
  • Nowak A, Hedenstierna M, Ursing J, et al. Efficacy of routine fecal microbiota transplantation for treatment of recurrent Clostridium difficile infection: a retrospective cohort study. Int J Microbiol. 2019;2019:1–7.
  • Ott SJ, Waetzig GH, Rehman A, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology. 2017;152(4):799–811.e7.
  • Sbahi H, Palma JAD. Faecal microbiota transplantation: applications and limitations in treating gastrointestinal disorders. BMJ Open Gastroenterol. 2016;3(1):e000087.
  • Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol. 2016;9(2):229–239.
  • McGovern BH, Ford CB, Henn MR, et al. SER-109, an investigational microbiome drug to reduce recurrence after Clostridioides difficile Infection: lessons learned from a Phase 2 trial. Clin Infect Dis. 2021;72(12):2132–2140.
  • Dsouza M, Menon R, Crossette E, et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe. 2022;30(4):583–598.e8.
  • Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nature Rev Microbiol. 2015;13(12):777–786.
  • Doron S, Melamed S, Ofir G, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 2018;359(6379). DOI:10.1126/science.aar4120
  • Tal N, Sorek R. SnapShot: bacterial immunity. Cell. 2022;185(3):578.
  • Koonin EV, Krupovic M. Phages build anti-defence barriers. Nat Microbiol. 2020;5(1):8–9.
  • Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and their phage foes. Nature. 2020;577(7790):327–336.
  • Fortier L-C, Moineau S. Morphological and genetic diversity of temperate phages in Clostridium difficile. Appl Environ Microbiol. 2007;73(22):7358–7366.
  • Meader E, Mayer MJ, Gasson MJ, et al. Bacteriophage treatment significantly reduces viable Clostridium difficile and prevents toxin production in an in vitro model system. Anaerobe. 2010;16(6):549–554.
  • Hargreaves KR, Clokie MRJ. Clostridium difficile phages: still difficult? Front Microbiol. 2014;5. DOI:10.3389/fmicb.2014.00184
  • Dowah ASA, Xia G, Ali AAK, et al. The structurome of a Clostridium difficile phage and the remarkable accurate prediction of its novel phage receptor-binding protein. bioRxiv. 2021. DOI:10.1101/2021.07.05.451159
  • Phothichaisri W, Ounjai P, Phetruen T, et al. Characterization of bacteriophages infecting clinical isolates of Clostridium difficile. Front Microbiol. 2018;9. DOI:10.3389/fmicb.2018.01701
  • Royer ALM, Umansky AA, Allen M-M, et al. The Clostridioides difficile S-layer protein a (SlpA) serves as a general phage receptor. bioRxiv. 2022. DOI:10.1101/2022.09.19.508581
  • Whittle MJ, Bilverstone TW, Esveld RJ van, et al. A novel bacteriophage with broad host range against Clostridioides difficile ribotype 078 supports SlpA as the likely phage receptor. Microbiol Spectr. 2022;10(1). DOI:10.1128/spectrum.02295-21
  • Nale JY, Spencer J, Hargreaves KR, et al. Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob Agents Chemother. 2015. DOI:10.1128/AAC.01774-15
  • Nale JY, Redgwell TA, Millard A, et al. Efficacy of an optimised bacteriophage cocktail to clear Clostridium difficile in a batch fermentation model. Antibiotics. 2018;7(1):13.
  • Gebhart D, Lok S, Clare S, et al. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio. 2015;6(2). DOI:10.1128/mBio.02368-14
  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25(5):730–733.
  • Selle K, Fletcher JR, Tuson H, et al. In Vivo targeting of Clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. MBio. 2020;11(2). DOI:10.1128/mBio.00019-20
  • McCallin S, Alam Sarker S, Barretto C, et al. Safety analysis of a Russian phage cocktail: from MetaGenomic analysis to oral application in healthy human subjects. Virology. 2013;443(2):187–196.
  • Park K, Cha KE, Myung H. Observation of inflammatory responses in mice orally fed with bacteriophage T7. J Appl Microbiol. 2014;117(3):627–633.
  • Fischetti VA. Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol. 2010;300(6):357–362.
  • Mayer MJ, Garefalaki V, Spoerl R, et al. Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range. J Bacteriol. 2011;193(19):5477–5486.
  • Phothichaisri W, Chankhamhaengdecha S, Janvilisri T, et al. Potential role of the host-derived cell-wall binding domain of endolysin CD16/50L as a molecular anchor in preservation of uninfected Clostridioides difficile for new rounds of phage infection. Microbiol Spectr. 2022;10(2). DOI:10.1128/spectrum.02361-21
  • Wang Q, Euler CW, Delaune A, et al. Using a novel lysin to help control Clostridium difficile infections. Antimicrob Agents Chemother. 2015;59(12):7447–7457.
  • Orth P, Xiao L, Hernandez LD, et al. Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J Biol Chem. 2014;289(26):18008–18021.
  • Warn P, Thommes P, Sattar A, et al. Disease progression and resolution in rodent models of Clostridium difficile infection and impact of antitoxin antibodies and vancomycin. Antimicrob Agents Chemother. 2016;60(11):6471–6482.
  • Džunková M, D’Auria G, Xu H, et al. The monoclonal antitoxin antibodies (Actoxumab–bezlotoxumab) treatment facilitates normalization of the gut microbiota of mice with Clostridium difficile infection. Front Cell Infect Microbiol. 2016;6. DOI:10.3389/fcimb.2016.00119
  • Wilcox MH, Gerding DN, Poxton IR, et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med. 2017;376(4):305–317.
  • Thandavaram A, Channar A, Purohit A et al, et al., 2022 14 8 e27979 . The efficacy of bezlotoxumab in the prevention of recurrent Clostridium difficile: a systematic review. Cureus [].
  • Mileto SJ, Hutton ML, Walton SL, et al. Bezlotoxumab prevents extraintestinal organ damage induced by Clostridioides difficile infection. Gut Microbes. 2022;14(1):2117504.
  • Prabhu VS, Dubberke ER, Dorr MB, et al. Cost-effectiveness of bezlotoxumab compared with placebo for the prevention of recurrent Clostridium difficile infection. Clin Infect Dis. 2018;66(3):355–362.
  • Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs. 2020;34(1):11–26.
  • Péchiné S, Janoir C, Collignon A. Emerging monoclonal antibodies against Clostridium difficile infection. Expert Opin Biol Ther. 2017;17(4):415–427.
  • Murase T, Eugenio L, Schorr M, et al. Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile. J Biol Chem. 2014;289(4):2331–2343.
  • Yang Z, Schmidt D, Liu W, et al. A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. Infection Mice J Infect Dis. 2014;210(6):964–972.
  • Unger M, Eichhoff AM, Schumacher L, et al. Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Sci Rep. 2015;5(1):1–10.
  • Kandalaft H, Hussack G, Aubry A, et al. Targeting surface-layer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease. Appl Microbiol Biotechnol. 2015;99(20):8549–8562.
  • Petrosillo N, Granata G, Cataldo MA. Novel antimicrobials for the treatment of Clostridium difficile infection. Front Med. 2018;5. DOI:10.3389/fmed.2018.00096
  • Wiedemann I, Böttiger T, Bonelli RR, et al. The mode of action of the lantibiotic lacticin 3147 - a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol. 2006;61(2):285–296.
  • Rea M, Clayton E, O’Connor P et al, et al., 2007 56 Pt7 940–946 . Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. J Medical Microbiol. [cited 2022].
  • Rea MC, Dobson A, O’Sullivan O, et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci U S A. 2011;108():4639–4644.
  • Gerding DN, Cornely OA, Grill S, et al. Cadazolid for the treatment of Clostridium difficile infection: results of two double-blind, placebo-controlled, non-inferiority, randomised phase 3 trials. Lancet Infect Dis. 2019;19(3):265–274.
  • Rashid M-U, Lozano HM, Weintraub A, et al. In vitro activity of cadazolid against Clostridium difficile strains isolated from primary and recurrent infections in Stockholm, Sweden. Anaerobe. 2013;20:32–35.
  • Snydman DR, Jacobus NV, McDermott LA. Activity of a novel cyclic lipopeptide, CB-183,315, against resistant Clostridium difficile and other gram-positive aerobic and anaerobic intestinal pathogens. Antimicrob Agents Chemother. 2012;56(6):3448–3452.
  • Daley P, Louie T, Lutz JE, et al. Surotomycin versus vancomycin in adults with Clostridium difficile infection: primary clinical outcomes from the second pivotal, randomized, double-blind, Phase 3 trial. J Antimicrob Chemother. 2017;72(12):3462–3470.
  • Xu W-C, Silverman MH, Yu XY, et al. Discovery and development of DNA polymerase IIIC inhibitors to treat Gram-positive infections. Bioorg Med Chem. 2019;27(15):3209–3217.
  • Garey KW, McPherson J, Dinh AQ, et al. Efficacy, safety, pharmacokinetics, and microbiome changes of ibezapolstat in adults with Clostridioides difficile infection: a Phase 2a multicenter clinical trial. Clin Infect Dis. 2022;75(7):1164–1170.
  • McPherson J, Hu C, Begum K, et al. Functional and metagenomic evaluation of ibezapolstat for early evaluation of anti-recurrence effects in Clostridioides difficile infection. Antimicrob Agents Chemother. 2022;66(8). DOI:10.1128/aac.02244-21
  • Vickers RJ, Tillotson GS, Nathan R, et al. Efficacy and safety of ridinilazole compared with vancomycin for the treatment of Clostridium difficile infection: a phase 2, randomised, double-blind, active-controlled, non-inferiority study. Lancet Infect Dis. 2017;17(7):735–744.
  • Collins DA, Wu Y, Tateda K, et al. Evaluation of the antimicrobial activity of ridinilazole and six comparators against Chinese, Japanese and South Korean strains of Clostridioides difficile. J Antimicrob Chemother. 2021;76(4):967–972.
  • Vickers R, Robinson N, Best E, et al. A randomised phase 1 study to investigate safety, pharmacokinetics and impact on gut microbiota following single and multiple oral doses in healthy male subjects of SMT19969, a novel agent for Clostridium difficile infections. BMC Infect Dis. 2015;15(1):91.
  • Hutton ML, Pehlivanoglu H, Vidor CJ, et al. Repurposing auranofin as a Clostridioides difficile therapeutic. J Antimicrob Chemother. 2020;75:409–417.
  • Wullt M, Odenholt I. A double-blind randomized controlled trial of fusidic acid and metronidazole for treatment of an initial episode of Clostridium difficile-associated diarrhoea. J Antimicrob Chemother. 2004;54(1):211–216.
  • Chen LF, Kaye D. Current use for old antibacterial agents: polymyxins, rifamycins, and aminoglycosides. Med Clin North Am Antibacterial Ther Newer Agents. 2011;95(4):819–842.
  • Jump RLP, Kraft D, Hurless K, et al. Impact of Tigecycline versus other antibiotics on the fecal metabolome and on colonization resistance to Clostridium difficile in mice. PAI. 2017;2(1):1–20.
  • Carlson PE, Kaiser AM, McColm SA, et al. Variation in germination of Clostridium difficile clinical isolates correlates to disease severity. Anaerobe. 2015;33:64–70.
  • Francis MB, Allen CA, Sorg JA. Muricholic acids inhibit Clostridium difficile spore germination and growth. PLoS One. 2013;8(9):e73653.
  • Shen E, Zhu K, Li D, et al. Subtyping analysis reveals new variants and accelerated evolution of Clostridioides difficile toxin B. Commun Biol. 2020;3(1):1–8.
  • Sekulovic O, Bedoya MO, Fivian-Hughes AS, et al. The Clostridium difficile cell wall protein CwpV confers phase-variable phage resistance. Mol Microbiol. 2015;98(2):329–342.