1,204
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The defective gut colonization of Candida albicans hog1 MAPK mutants is restored by overexpressing the transcriptional regulator of the white opaque transition WOR1

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2174294 | Received 30 Jun 2022, Accepted 28 Oct 2022, Published online: 09 Feb 2023

References

  • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–16.
  • Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36(1):1–53.
  • Gudlaugsson O, Gillespie S, Lee K, et al. Attributable mortality of nosocomial candidemia. Revisited Clin Infect Dis. 2003;37(9):1172–1177. DOI:10.1086/378745
  • Brown GD, Denning DW, Gow NA, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13.
  • Magill SS, Swoboda SM, Johnson EA, et al. The association between anatomic site of Candida colonization, invasive candidiasis, and mortality in critically ill surgical patients. Diagn Microbiol Infect Dis. 2006;55(4):293–301. DOI:10.1016/j.diagmicrobio.2006.03.013
  • Miranda LN, van der Heijden IM, Costa SF, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 2009;72(1):9–16. DOI:10.1016/j.jhin.2009.02.009
  • Papon N, Courdavault V, Clastre M, et al. Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade. Microbiol. 2012;158(3):585–600.
  • Alonso-Monge R, Gresnigt MS, Román E, et al. Candida albicans colonization of the gastrointestinal tract: a double-edged sword. PLOS Pathog. 2021;17(7):e1009710.
  • Neville BA, d’Enfert C, Bougnoux ME. Candida albicans commensalism in the gastrointestinal tract. FEMS Yeast Res. 2015;15(7):fov081.
  • Prieto D, Correia I, Pla J, et al. Adaptation of Candida albicans to commensalism in the gut. Future Microbiol. 2016;11(4):567–583.
  • Romo JA, Kumamoto CA. On Commensalism of Candida. J Fungi. 2020;6(1):6. Basel, Switzerland.
  • Pierce JV, Kumamoto CA, Lorenz M. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. MBio. 2012;3(4): e00117-12. DOI:10.1128/mBio.00117-12
  • Sonneborn A, Tebarth B, Ernst JF. Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect Immun. 1999;67(9):4655–4660.
  • Soll DR. The role of phenotypic switching in the basic biology and pathogenesis of Candida albicans. J Oral Microbiol. 2014;6(1):6.
  • Morschhauser J. Regulation of white-opaque switching in Candida albicans. MedMicrobiol and Immunol. 2010;199(3):165–172.
  • Zordan RE, Galgoczy DJ, Johnson AD. Epigenetic properties of white–opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. PNAS USA. 2006;103(34):12807–12812.
  • Srikantha T, Borneman AR, Daniels KJ, et al. TOS9 regulates white-opaque switching in Candida albicans. Eukaryot Cell. 2006;5(10):1674–1687. DOI:10.1128/EC.00252-06
  • Huang G, Wang H, Chou S, et al. Bistable expression of WOR1 , a master regulator of white–opaque switching in Candida albicans. PNAS USA. 2006;103(34):12813–12818.
  • Pande K, Chen C, Noble SM. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. 2013;45(9):1088–1091.
  • Ramirez-Zavala B, Reuss O, Park YN, et al. Environmental induction of white–opaque switching in Candida albicans. PLOS Pathog. 2008;4(6):e1000089.
  • Huang G, Srikantha T, Sahni N, et al. CO2 regulates white-to-opaque switching in Candida albicans. Curr Biol. 2009;19(4):330–334.
  • Huang G, Yi S, Sahni N, et al. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLOS Pathog. 2010;6(3):e1000806.
  • Kvaal C, Lachke SA, Srikantha T, et al. Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun. 1999;67(12):6652–6662.
  • Kvaal CA, Srikantha T, Soll DR. Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect Immun. 1997;65(11):4468–4475.
  • Kolotila MP, Diamond RD. Effects of neutrophils and in vitro oxidants on survival and phenotypic switching of Candida albicans WO-1. Infect Immun. 1990;58(5):1174–1179.
  • Geiger J, Wessels D, Lockhart SR, et al. Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect Immun. 2004;72(2):667–677.
  • Lohse MB, Johnson AD, Beier D. Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PLoS ONE. 2008;3(1):e1473.
  • Sasse C, Hasenberg M, Weyler M, et al. White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion. Eukaryot Cell. 2013;12(1):50–58.
  • Prieto D, Roman E, Alonso-Monge R, et al. Overexpression of the transcriptional regulator WOR1 increases susceptibility to bile salts and adhesion to the mouse gut mucosa in Candida albicans. Front Cell Infect Microbiol. 2017;7:389.
  • Vico SH, Prieto D, Monge RA, et al. The glyoxylate cycle is involved in white-opaque switching in Candida albicans. J Fungi. 2021;7(7):502. Basel, Switzerland.
  • Gunsalus KT, Kumamoto CA. Transcriptional profiling of Candida albicans in the Host. Methods Mol Biol. 2016;1356:17–29.
  • Noble SM. Candida albicans specializations for iron homeostasis: from commensalism to virulence. Curr Opin Microbiol. 2013;16(6):708–715.
  • Román E, Arana DM, Nombela C, et al. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 2007;15(4):181–190.
  • Eisman B, Alonso-Monge R, Román E, et al. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell. 2006;5(2):347–358.
  • Herrero de Dios C, Román E, Diez C, et al. The transmembrane protein Opy2 mediates activation of the Cek1 MAP kinase in Candida albicans. Fungal Genet Biol. 2013;50:21–32.
  • Prieto AD, Román E, Correia I, et al. The HOG pathway is critical for the colonization of the mouse gastrointestinal tract by Candida albicans. PLoS ONE. 2014;9(1):e87128.
  • Alonso-Monge R, Navarro-García F, Molero G, et al. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol. 1999;181(10):3058–3068. DOI:10.1128/JB.181.10.3058-3068.1999
  • Ost KS, O’meara TR, Stephens WZ, et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature. 2021;596(7870):114–118. DOI:10.1038/s41586-021-03722-w
  • Kavanaugh NL, Zhang AQ, Nobile CJ, et al. Mucins suppress virulence traits of Candida albicans. MBio. 2014;5(6):e01911.
  • Tso GHW, Reales-Calderon JA, Tan ASM, et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science. 2018;362(6414):589–595. DOI:10.1126/science.aat0537
  • Schaller M, Borelli C, Korting HC, et al. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005;48(6):365–377.
  • Liu Y, Filler SG. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell. 2011;10(2):168–173.
  • Staab JF, Bradway SD, Fidel PL, et al. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science. 1999;283(5407):1535–1538.
  • Staab JF, Datta K, Rhee P. Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans. PLoS ONE. 2013;8(11):e80842.
  • Hoyer LL, Cota E. Candida albicans agglutinin-like sequence (Als) Family Vignettes: a review of als protein structure and function. Front Microbiol. 2016;7:280.
  • Hoyer LL, Green CB, Oh SH, et al. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family–a sticky pursuit. Med Mycol. 2008;46(1):1–15.
  • Doron I, Mesko M, Li XV, et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat Microbiol. 2021;6(12):1493–1504. DOI:10.1038/s41564-021-00983-z
  • de Repentigny L, Aumont F, Bernard K, et al. Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infect Immun. 2000;68(6):3172–3179.
  • Witchley JN, Penumetcha P, Abon NV, et al. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host Microbe. 2019;25(3):432–43.e6.
  • Pierce JV, Dignard D, Whiteway M, et al. Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes. Eukaryot Cell. 2013;12(1):37–49.
  • Bohm L, Torsin S, Tint SH, et al. The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice. PLOS Pathog. 2017;13(10):e1006699.
  • Roman E, Huertas B, Prieto D, et al. TUP1-mediated filamentation in Candida albicans leads to inability to colonize the mouse gut. Future Microbiol. 2018;13(8):857–867.
  • Rosenbach A, Dignard D, Pierce JV, et al. Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryot Cell. 2010;9(7):1075–1086.
  • White SJ, Rosenbach A, Lephart P, et al. Self-Regulation of Candida albicans Population Size during GI Colonization. PLOS Pathog. 2007;3(12):e184. DOI:10.1371/journal.ppat.0030184
  • Pérez JC. Candida albicans dwelling in the mammalian gut. Curr Opin Microbiol. 2019;52:41–46.
  • Alonso-Monge R, Carvaihlo S, Nombela C, et al. The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiology. 2009;155(2):413–423.
  • Alonso-Monge R, Navarro-García F, Román E, et al. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell. 2003;2(2):351–361. DOI:10.1128/EC.2.2.351-361.2003
  • Liang SH, Cheng JH, Deng FS, et al. A novel function for Hog1 stress-activated protein kinase in controlling white-opaque switching and mating in Candida albicans. Eukaryot Cell. 2014;13(12):1557–1566.
  • Enjalbert B, Smith DA, Cornell MJ, et al. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell. 2006;17(2):1018–1032. DOI:10.1091/mbc.e05-06-0501
  • Fonzi WA, Irwin MY. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993;134(7):717–728.
  • Roman E, Prieto D, Martin R, Correia I, Mesa Arango AC, Alonso-Monge R. Role of catalase overproduction in drug resistance and virulence in Candida albicans. Future Microbiol. 2016.
  • Román E, Correia I, Salazin A, et al. The Cek1-mediated MAP Kinase Pathway Regulates Exposure of α1,2 and β-(1,2) mannosides in the cell wall of Candida albicans modulating immune recognition Virulence . : , 2016 (7) 558–77.
  • Echevarria A, Durante AG, Arechaval A, et al. Comparative study of two culture media for the detection of phospholipase activity of Candida albicans and Cryptococcus neoformans strains. Rev Iberoam Micol. 2002;19(2):95–98.
  • Martín H, Arroyo J, Sánchez M, et al. Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37° C. Mol Gen Genet. 1993;241(1–2):177–184.
  • Martin H, Rodriguez-Pachon JM, Ruiz C, et al. Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem. 2000;275(2):1511–1519.
  • Garcia R, Bermejo C, Grau C, et al. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem. 2004;279(15):15183–15195. DOI:10.1074/jbc.M312954200