1,033
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Outer membrane protein OMP76 of Riemerella anatipestifer contributes to complement evasion and virulence by binding to duck complement factor vitronectin

, , , , , , , , , , & show all
Article: 2223060 | Received 21 Mar 2023, Accepted 05 Jun 2023, Published online: 16 Jun 2023

References

  • McBride MJ, Zhu Y. Gliding motility and Por secretion system genes are widespread among members of the phylum bacteroidetes. J Bacteriol. 2013;195(2):270–15. doi: 10.1128/JB.01962-12
  • Segers P, Mannheim W, Vancanneyt M, et al. Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. Int J Syst Bacteriol. 1993;43(4):768–776. doi: 10.1099/00207713-43-4-768
  • Magyar T, Gyuris É, Ujvári B, et al. Genotyping of Riemerella anatipestifer by ERIC-PCR and correlation with serotypes. Avian Pathol. 2019;48(1):12–16. doi: 10.1080/03079457.2018.1535693
  • Liu H, Wang X, Ding C, et al. Development and evaluation of a trivalent Riemerella anatipestifer-inactivated vaccine. Clin Vaccine Immunol. 2013;20(5):691–697. doi: 10.1128/CVI.00768-12
  • Pathanasophon P, Phuektes P, Tanticharoenyos T, et al. A potential new serotype of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol. 2002;31(3):267–270. doi: 10.1080/03079450220136576
  • Sun N, Liu JH, Yang F, et al. Molecular characterization of the antimicrobial resistance of Riemerella anatipestifer isolated from ducks. Vet Microbiol. 2012;158(3–4):376–383. doi: 10.1016/j.vetmic.2012.03.005
  • Zhong CY, Cheng AC, Wang MS, et al. Antibiotic susceptibility of Riemerella anatipestifer field isolates. Avian Dis. 2009;53(4):601–607. doi: 10.1637/8552-120408-ResNote.1
  • Chen Q, Gong X, Zheng F, et al. Interplay between the phenotype and genotype, and efflux pumps in drug-resistant strains of Riemerella anatipestifer. Front Microbiol. 2018;9:2136. doi: 10.3389/fmicb.2018.02136
  • Yi H, Yuan B, Liu J, et al. Identification of a wza-like gene involved in capsule biosynthesis, pathogenicity and biofilm formation in Riemerella anatipestifer. Microb Pathog. 2017;107:442–450. doi: 10.1016/j.micpath.2017.04.023
  • Dou Y, Yu G, Wang X, et al. The Riemerella anatipestifer M949_RS01035 gene is involved in bacterial lipopolysaccharide biosynthesis. Vet Res. 2018;49(1):93. doi: 10.1186/s13567-018-0589-8
  • Huang L, Wang M, Mo T, et al. Role of LptD in resistance to glutaraldehyde and pathogenicity in Riemerella anatipestifer. Front Microbiol. 2019;10:1443. doi: 10.3389/fmicb.2019.01443
  • Fan M, Chen S, Zhang L, et al. Riemerella anatipestifer extracellular protease S blocks complement activation via the classical and lectin pathways. Avian Pathol. 2017;46(4):426–433. doi: 10.1080/03079457.2017.1301648
  • Li T, Shan M, Liu L, et al. Characterization of the Riemerella anatipestifer M949_RS00050 gene. Vet Microbiol. 2020;240:108548. doi: 10.1016/j.vetmic.2019.108548
  • Gao Q, Lu S, Wang M, et al. Putative Riemerella anatipestifer outer membrane protein H affects virulence. Front Microbiol. 2021;12:708225. doi: 10.3389/fmicb.2021.708225
  • Chen Z, Niu P, Ren X, et al. Riemerella anatipestifer T9SS effector SspA functions in bacterial virulence and defending natural host immunity. Appl environ microbiol. 2022;88(11):e02409–21. doi:10.1128/aem.02409-21
  • Fujita M, Mori K, Hara H, et al. A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound. Commun Biol. 2019;2(1):432. doi: 10.1038/s42003-019-0676-z
  • Chimento DP, Kadner RJ, Wiener MC. The Escherichia coli outer membrane cobalamin transporter BtuB: structural analysis of calcium and substrate binding, and identification of orthologous transporters by sequence/structure conservation. J Mol Biol. 2003;332(5):999–1014. doi: 10.1016/j.jmb.2003.07.005
  • Otto BR, Vught AM V-V, MacLaren DM. Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol. 1992;18(3):217–233. doi: 10.3109/10408419209114559
  • Lu F, Miao S, Tu J, et al. The role of TonB-dependent receptor TbdR1 in Riemerella anatipestifer in iron acquisition and virulence. Vet Microbiol. 2013;167(3–4):713–718. doi: 10.1016/j.vetmic.2013.08.020
  • Reis ES, Mastellos DC, Hajishengallis G, et al. New insights into the immune functions of complement. Nat Rev Immunol. 2019;19(8):503–516. doi: 10.1038/s41577-019-0168-x
  • Ricklin D, Hajishengallis G, Yang K, et al. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–797. doi: 10.1038/ni.1923
  • Hovingh ES, van den Broek B, Jongerius I. Hijacking complement regulatory proteins for bacterial immune evasion. Front Microbiol. 2016;7. doi:10.3389/fmicb.2016.02004
  • Conlan MG, Tomasini BR, Schultz RL, et al. Plasma vitronectin polymorphism in normal subjects and patients with disseminated intravascular coagulation. Blood. 1988;72(1):185–190. doi: 10.1182/blood.V72.1.185.bloodjournal721185
  • Moore SR, Menon SS, Cortes C, et al. Hijacking factor H for complement immune evasion. Front Immunol. 2021;12:602277. doi: 10.3389/fimmu.2021.602277
  • Singh B, Su YC, Riesbeck K. Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Molecular Microbiology. 2010;78(3):545–560. doi: 10.1111/j.1365-2958.201007373.x
  • Lathem WW, Bergsbaken T, Welch RA. Potentiation of C1 esterase inhibitor by StcE, a metalloprotease secreted by Escherichia coli O157: h7. J Exp Med. 2004;199(8):1077–1087. doi: 10.1084/jem.20030255
  • Hallström T, Singh B, Kraiczy P, et al. Conserved patterns of microbial immune Escape: pathogenic microbes of diverse origin target the human terminal complement inhibitor vitronectin via a single common motif. PLoS ONE. 2016;11(1):e0147709. doi: 10.1371/journal.pone.0147709
  • Andreae CA, Sessions RB, Virji M, et al. Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design. PLoS ONE. 2018;13(3):e0193940. doi: 10.1371/journal.pone.0193940
  • Hallström T, Uhde M, Singh B, et al. Pseudomonas aeruginosa uses dihydrolipoamide dehydrogenase (Lpd) to bind to the human terminal pathway regulators vitronectin and clusterin to inhibit terminal pathway complement attack. PLoS ONE. 2015;10(9):e0137630. doi: 10.1371/journal.pone.0137630
  • Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9(10):729–740. doi: 10.1038/nri2620
  • Zhou Z, Peng X, Xiao Y, et al. Genome sequence of poultry pathogen Riemerella anatipestifer strain RA-YM. J Bacteriol. 2011;193(5):1284–1285. doi: 10.1128/JB.01445-10
  • Guo Y, Hu D, Guo J, et al. Riemerella anatipestifer type IX secretion system is required for virulence and gelatinase secretion. Front Microbiol. 2017;8:2553. doi: 10.3389/fmicb.2017.02553
  • Liu M, Zhang L, Huang L, et al. Use of natural transformation to establish an easy knockout method in Riemerella anatipestifer. Appl Environ Microbiol. 2017;83(9):e00127–17. doi: 10.1128/AEM.00127-17
  • Hu D, Guo Y, Guo J, et al. Deletion of the Riemerella anatipestifer type IX secretion system gene sprA results in differential expression of outer membrane proteins and virulence. Avian Pathol. 2019;48(3):191–203. doi: 10.1080/03079457.2019.1566594
  • Guo Y, Hu D, Guo J, et al. The role of the regulator fur in gene regulation and virulence of riemerella anatipestifer assessed using an unmarked gene deletion system. Front Cell Infect Microbiol. 2017;7:382. doi: 10.3389/fcimb.2017.00382
  • Niu P, Chen Z, Ren X, et al. A riemerella anatipestifer metallophosphoesterase that displays phosphatase activity and is associated with virulence. Appl Environ Microbiol. 2021;87(11):e00086–21. doi: 10.1128/AEM.00086-21
  • Wang YH, Zhang YG. Kidney and innate immunity. Immunol Lett. 2017;183:73–78. doi: 10.1016/j.imlet.2017.01.011
  • Röttgerding F, Kraiczy P. Immune evasion strategies of relapsing fever spirochetes. Front Immunol. 2020;11:1560. doi: 10.3389/fimmu.2020.01560
  • Krukonis ES, Thomson JJ. Complement evasion mechanisms of the systemic pathogens Yersiniae and Salmonellae. FEBS Lett. 2020;594(16):2598–2620. doi: 10.1002/1873-3468.13771
  • Griffiths NJ, Hill DJ, Borodina E, et al. Meningococcal surface fibril (Msf) binds to activated vitronectin and inhibits the terminal complement pathway to increase serum resistance. Mol Microbiol. 2011;82(5):1129–1149. doi: 10.1111/j.1365-2958.2011.07876.x
  • Hair PS, Foley CK, Krishna NK, et al. Complement regulator C4BP binds to Staphylococcus aureus surface proteins SdrE and Bbp inhibiting bacterial opsonization and killing. Results Immunol. 2013;3:114–121. doi: 10.1016/j.rinim.2013.10.004
  • Langereis JD, de Jonge MI, Weiser JN. Binding of human factor H to outer membrane protein P5 of non-typeable Haemophilus influenzae contributes to complement resistance. Mol Microbiol. 2014;94(1):89–106. doi: 10.1111/mmi.12741
  • Morgan BP. Regulation of the complement membrane attack pathway. Crit Rev Immunol. 1999;19(3):173–198. doi: 10.1615/CritRevImmunol.v19.i3.10
  • Bergmann S, Lang A, Rohde M, et al. Integrin-linked kinase is required for vitronectin-mediated internalization of Streptococcus pneumoniae by host cells. J Cell Sci. 2009;122(Pt2):256–267. doi: 10.1242/jcs.035600
  • Isberg RR, Hamburger Z, Dersch P. Signaling and invasin-promoted uptake via integrin receptors. Microbes Infect. 2000;2(7):793–801. doi: 10.1016/s1286-4579(00)90364-2
  • Kihlström E, Majeed M, Rozalska B, et al. Binding of Chlamydia trachomatis serovar L2 to collagen types I and IV, fibronectin, heparan sulphate, laminin and vitronectin. Zentralbl Bakteriol. 1992;277(3):329–333. doi: 10.1016/s0934-8840(11)80910-2
  • Preissner KT, May AE, Wohn KD, et al. Molecular crosstalk between adhesion receptors and proteolytic cascades in vascular remodelling. Thromb Haemost. 1997;78(1):88–95. doi: 10.1055/s-0038-1657507
  • Hu Q, Ding C, Tu J, et al. Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer. Vet Microbiol. 2012;157(3–4):428–438. doi: 10.1016/j.vetmic.2012.01.009
  • Su YC, Jalalvand F, Mörgelin M, et al. Haemophilus influenzae acquires vitronectin via the ubiquitous Protein F to subvert host innate immunity. Mol Microbiol. 2013;87(6):1245–1266. doi: 10.1111/mmi.12164
  • Mamou G, Corona F, Cohen-Khait R, et al. Peptidoglycan maturation controls outer membrane protein assembly. Nature. 2022;606(7916):953–959. doi: 10.1038/s41586-022-04834-7
  • Riley SP, Patterson JL, Nava S, et al. Pathogenic Rickettsia species acquire vitronectin from human serum to promote resistance to complement-mediated killing. Cell Microbiol. 2014;16(6):849–861. doi: 10.1111/cmi.12243
  • Thomson JJ, Plecha SC, Krukonis ES. Ail provides multiple mechanisms of serum resistance to Yersinia pestis. Mol Microbiol. 2019;111(1):82–95. doi: 10.1111/mmi.14140
  • Singh B, Jalalvand F, Mörgelin M, et al. Haemophilus influenzae protein E recognizes the C-terminal domain of vitronectin and modulates the membrane attack complex. Mol Microbiol. 2011;81(1):80–98. doi: 10.1111/j.1365-2958.2011.07678.x 07678.x.
  • Attia AS, Ram S, Rice PA, et al. Binding of vitronectin by the Moraxella catarrhalis UspA2 protein interferes with late stages of the complement cascade. Infect Immun. 2006;74(3):1597–1611. doi: 10.1128/IAI.74.3.1597-1611.2006
  • Leroy-Dudal J, Gagnière H, Cossard E, et al. Role of alphavbeta5 integrins and vitronectin in Pseudomonas aeruginosa PAK interaction with A549 respiratory cells. Microbes Infect. 2004;6(10):875–881. doi: 10.1016/j.micinf.2004.05.004
  • Cotter SE, Surana NK, St Geme JW. Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol. 2005;13(5):199–205. doi: 10.1016/j.tim.2005.03.004
  • Hu Q, Han X, Zhou X, et al. OmpA is a virulence factor of Riemerella anatipestifer. Vet Microbiol. 2011;150(3–4):278–283. doi: 10.1016/j.vetmic.2011.01.022
  • Roy Chowdhury A, Sah S, Varshney U, et al. Salmonella Typhimurium outer membrane protein a (OmpA) renders protection from nitrosative stress of macrophages by maintaining the stability of bacterial outer membrane. PLOS Pathog. 2022;18(8):e1010708. doi: 10.1371/journal.ppat.1010708
  • Behrens-Kneip S. The role of SurA factor in outer membrane protein transport and virulence. Int J Med Microbiol. 2010;300(7):421–428. doi: 10.1016/j.ijmm.2010.04.012
  • Huang L, Yuan H, Liu MF, et al. Type B chloramphenicol acetyltransferases are responsible for chloramphenicol resistance in Riemerella anatipestifer, China. Front Microbiol. 2017;8:297. doi: 10.3389/fmicb.2017.00297
  • Luo H, Liu M, Wang L, et al. Identification of ribosomal RNA methyltransferase gene ermF in Riemerella anatipestifer. Avian Pathol. 2015;44(3):162–168. doi: 10.1080/03079457.2015.1019828
  • Zhu DK, Luo HY, Liu MF, et al. Various profiles of tet genes addition to tet(X) in Riemerella anatipestifer Isolates from Ducks in China. Front Microbiol. 2018;9:585. doi: 10.3389/fmicb.2018.00585
  • Sandhu T. Immunization of White Pekin ducklings against Pasteurella anatipestifer infection. Avian Dis. 1979;23(3):662–669. doi: 10.2307/1589742
  • Seib KL, Scarselli M, Comanducci M, et al. Neisseria meningitidis factor H-binding protein fHbp: a key virulence factor and vaccine antigen. Expert Rev Vaccines. 2015;14(6):841–859. doi: 10.1586/14760584.2015.1016915
  • Locht C. Pertussis: where did we go wrong and what can we do about it? J Infect. 2016;72(Suppl: S34–40):S34–S40. doi: 10.1016/j.jinf.2016.04.020
  • Veggi D, Bianchi F, Santini L, et al. 4cmenb vaccine induces elite cross-protective human antibodies that compete with human factor H for binding to meningococcal fHbp. PLOS Pathog. 2020;16(10):e1008882. doi: 10.1371/journal.ppat.1008882