433
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Streptococcus pyogenes emm98.1 variants activate inflammatory caspases in human neutrophils

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2264090 | Received 21 Sep 2021, Accepted 08 Sep 2023, Published online: 13 Oct 2023

References

  • Walker MJ, Barnett TC, Mcarthur JD, et al. Disease manifestations and pathogenic mechanisms of group a Streptococcus. Clin Microbiol Rev. 2014;27(2):264–12. doi: 10.1128/CMR.00101-13
  • Davies HD, Mcgeer A, Schwartz B, et al. Invasive group a streptococcal infections in Ontario, Canada. N Engl J Med. 1996;335(8):547–554. doi: 10.1056/NEJM199608223350803
  • Lamagni TL, Darenberg J, Luca-Harari B, et al. Epidemiology of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol. 2008;46:2359–2367. doi: 10.1128/JCM.00422-08
  • Nelson GE, Pondo T, Toews KA, et al. Epidemiology of invasive group a streptococcal infections in the United States, 2005–2012. Clinl Infect Dis. 2016;63(4):478–486. doi: 10.1093/cid/ciw248
  • O’Grady K-AF, Kelpie L, Andrews RM, et al. The epidemiology of invasive group a streptococcal disease in Victoria, Australia. Med J Aust. 2007;186(11):565–569. doi: 10.5694/j.1326-5377.2007.tb01054.x
  • O’Loughlin RE, Roberson A, Cieslak PR, et al. The epidemiology of invasive group a streptococcal infection and potential vaccine implications: United States, 2000-2004. Clinl Infect Dis. 2007;45(7):853–862. doi: 10.1086/521264
  • Svensson N, Öberg S, Henriques B, et al. Invasive group a streptococcal infections in Sweden in 1994 and 1995: epidemiology and clinical spectrum. Scand J Infect Dis. 2000;32(6):609–614. doi: 10.1080/003655400459504
  • Carapetis JR, Steer AC, Mulholland EK, et al. The global burden of group a streptococcal diseases. Lancet Infect Dis. 2005;5(11):685–694. doi: 10.1016/S1473-3099(05)70267-X
  • Gherardi G, Vitali LA, Creti R. Prevalent emm types among invasive GAS in Europe and North America since year 2000. Front Public Health. 2018;6:59. doi: 10.3389/fpubh.2018.00059
  • Luca-Harari B, Darenberg J, Neal S, et al. Clinical and microbiological characteristics of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol. 2009;47(4):1155–1165. doi: 10.1128/JCM.02155-08
  • Walker MJ, Hollands A, Sanderson-Smith ML, et al. Dnase Sda1 provides selection pressure for a switch to invasive group a streptococcal infection. Nature Med. 2007;13(8):981–985. doi: 10.1038/nm1612
  • Hollands A, Pence MA, Timmer AM, et al. Genetic switch to hypervirulence reduces colonization phenotypes of the globally disseminated group a Streptococcus M1T1 clone. J Infect Dis. 2010;202(1):11–19. doi: 10.1086/653124
  • Hassell M, Fagan P, Carson P, et al. Streptococcal necrotising fasciitis from diverse strains of Streptococcus pyogenes in tropical northern Australia: case series and comparison with the literature. BMC Infect Dis. 2004;4(1):60. doi: 10.1186/1471-2334-4-60
  • Norton R, Smith HV, Wood N, et al. Invasive group a streptococcal disease in North Queensland (1996 – 2001). Indian J Med Res. 2004;119:148–151.
  • Richardson LJ, Towers RJ, Cheng AC, et al. Diversity of emm sequence types in group a beta-haemolytic streptococci in two remote northern territory indigenous communities: implications for vaccine development. Vaccine. 2010;28(32):5301–5305. doi: 10.1016/j.vaccine.2010.05.046
  • Maamary PG, Sanderson-Smith ML, Aziz RK, et al. Parameters governing invasive disease propensity of non-M1 serotype group a streptococci. J Innate Immun. 2010;2(6):596–606. doi: 10.1159/000317640
  • Tsatsaronis JA, Ly D, Pupovac A, et al. Group a Streptococcus modulates host inflammation by manipulating polymorphonuclear leukocyte cell death responses. J Innate Immun. 2015;7:612–622. doi: 10.1159/000430498
  • Kobayashi SD, Malachowa N, Deleo FR. Neutrophils and bacterial immune evasion. J Innate Immun. 2018;10(5–6):432–441. doi: 10.1159/000487756
  • Edwards RJ, Pyzio M, Gierula M, et al. Proteomic analysis at the sites of clinical infection with invasive Streptococcus pyogenes. Sci Rep. 2018;8(1). doi: 10.1038/s41598-018-24216-2
  • Kobayashi SD, Deleo FR. Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med. 2009;1(3):309–333. doi: 10.1002/wsbm.32
  • Kobayashi SD, Voyich JM, Buhl CL, et al. Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: cell fate is regulated at the level of gene expression. Proc Natl Acad Sci USA. 2002;99:6901–6906.
  • Bratton DL, Henson PM. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol. 2011;32(8):350–357. doi: 10.1016/j.it.2011.04.009
  • Kobayashi SD, Voyich JM, Braughton KR, et al. Down-regulation of proinflammatory capacity during apoptosis in human polymorphonuclear leukocytes. J Immunol. 2003b;170(6):3357–3368. doi: 10.4049/jimmunol.170.6.3357
  • Lawrence SM, Corriden R, Nizet V. How neutrophils meet their end. Trends Immunol. 2020;41(6):531–544. doi: 10.1016/j.it.2020.03.008
  • Liu L, Sun B. Neutrophil pyroptosis: new perspectives on sepsis. Cell Mol Life Sci. 2019;76(11):2031–2042. doi: 10.1007/s00018-019-03060-1
  • Epstein FH, Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989;320(6):365–376. doi: 10.1056/NEJM198902093200606
  • Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003;5(14):1317–1327. doi: 10.1016/j.micinf.2003.09.008
  • Kobayashi SD, Braughton KR, Whitney AR, et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci USA. 2003a;100:10948–10953.
  • Williams JG, Ly D, Geraghty NJ, et al. Streptococcus pyogenes M1T1 variants induce an inflammatory neutrophil phenotype including activation of inflammatory caspases. Front Cell Infect Microbiol. 2021;10. doi: 10.3389/fcimb.2020.596023
  • McLaughlin RE, Ferretti JJ. Electrotransformation of Streptococci. Methods Mol Biol. 1995;47:185–193 doi: 10.1385/0-89603-310-4:185
  • Thomas HB, Moots RJ, Edwards SW, et al. Whose gene is it anyway? The effect of preparation purity on neutrophil transcriptome studies. PLoS One. 2015;10(9):e0138982. doi: 10.1371/journal.pone.0138982
  • Flaherty RA, Puricelli JM, Higashi DL, et al. Streptolysin S promotes programmed cell death and enhances inflammatory signaling in epithelial keratinocytes during group a Streptococcus infection. Infect Immun. 2015;83(10):4118–4133. doi: 10.1128/IAI.00611-15
  • Timmer AM, Timmer JC, Pence MA, et al. Streptolysin O promotes group a streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem. 2009;284(2):862–871. doi: 10.1074/jbc.M804632200
  • Nagata S, Suzuki J, Segawa K, et al. Exposure of phosphatidylserine on the cell surface. Cell Death Diff. 2016;23(6):952–961. doi: 10.1038/cdd.2016.7
  • Daigle I, Simon HU. Critical role for caspases 3 and 8 in neutrophil but not eosinophil apoptosis. Int Arch Allergy Immunol. 2001;126(2):147–156. doi: 10.1159/000049506
  • Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11(12):1136–1142. doi: 10.1038/ni.1960
  • Sollberger G, Strittmatter GE, Kistowska M, et al. Caspase-4 is required for activation of inflammasomes. J Immunol. 2012;188(4):1992–2000. doi: 10.4049/jimmunol.1101620
  • Norrby-Teglund A, Chatellier S, Low DE, et al. Host variation in cytokine responses to superantigens determine the severity of invasive group a streptococcal infection. Eur J Immunol. 2000;30(11):3247–3255. doi: 10.1002/1521-4141(200011)30:11<3247:AID-IMMU3247>3.0.CO;2-D
  • Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75. doi: 10.1111/imr.12534
  • Arnaout MA. Structure and function of the leukocyte adhesion molecule CD11/CD18. Blood. 1990;75(5):1037–1050. doi: 10.1182/blood.V75.5.1037.1037
  • Power C, Wang JH, Sookhai S, et al. Proinflammatory effects of bacterial lipoprotein on human neutrophil activation status, function and cytotoxic potential in vitro. Shock. 2001;15(6):461–466. doi: 10.1097/00024382-200115060-00009
  • Skubitz KM, Campbell KD, Skubitz APN. CD66a, CD66b, CD66c, and CD66d each independently stimulate neutrophils. J Leukoc Biol. 1996;60(1):106–117. doi: 10.1002/jlb.60.1.106
  • Dransfield I, Buckle AM, Savill JS, et al. Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J Immunol. 1994;153(3):1254–1263. doi: 10.4049/jimmunol.153.3.1254
  • Fossati G, Moots RJ, Bucknall RC, et al. Differential role of neutrophil Fcγ receptor IIIb (CD16) in phagocytosis, bacterial killing, and responses to immune complexes. Arthritis & Rheumatism. 2002;46(5):1351–1361. doi: 10.1002/art.10230
  • Brown S, Heinisch I, Ross E, et al. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature. 2002;418(6894):200–203. doi: 10.1038/nature00811
  • Kurosaka K, Takahashi M, Watanabe N, et al. Silent cleanup of very early apoptotic Cells by macrophages. J Immunol. 2003;171(9):4672–4679. doi: 10.4049/jimmunol.171.9.4672
  • Zeilhofer HU, Schorr W. Role of interleukin-8 in neutrophil signaling. Current Opinion Hematol. 2000;7(3):178–182. doi: 10.1097/00062752-200005000-00009
  • Bréchard S, Bueb J-L, Tschirhart E. Interleukin-8 primes oxidative burst in neutrophil-like HL-60 through changes in cytosolic calcium. Cell Calcium. 2005;37(6):531–540. doi: 10.1016/j.ceca.2005.01.019
  • McFarlin BK, Williams RR, Venable AS, et al. Image-based cytometry reveals three distinct subsets of activated granulocytes based on phagocytosis and oxidative burst. Cytometry Part A. 2013;83A(8):745–751. doi: 10.1002/cyto.a.22330
  • Greenlee-Wacker MC, Rigby KM, Kobayashi SD, et al. Phagocytosis of staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis. J Immunol. 2014;192(10):4709–4717. doi: 10.4049/jimmunol.1302692
  • Bergsbaken T, Cookson BT. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation. J Leukoc Biol. 2009;86(5):1153–1158. doi: 10.1189/jlb.0309146
  • Holzinger D, Gieldon L, Mysore V, et al. Staphylococcus aureus Panton‐Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol. 2012;92(5):1069–1081. doi: 10.1189/jlb.0112014
  • Ryu JC, Kim MJ, Kwon Y, et al. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol. 2017;10(3):757–774. doi: 10.1038/mi.2016.73
  • Medina E, Goldmann O, Toppel AW, et al. Survival of Streptococcus pyogenes within host phagocytic cells: a pathogenic mechanism for persistence and systemic invasion. J Infect Dis. 2003a;187(4):597–603. doi: 10.1086/373998
  • Medina E, Rohde M, Chhatwal GS. Intracellular survival of Streptococcus pyogenes in polymorphonuclear cells results in increased bacterial virulence. Infect Immun. 2003b;71(9):5376–5380. doi: 10.1128/IAI.71.9.5376-5380.2003