436
Views
0
CrossRef citations to date
0
Altmetric
Research Article

M1-type polarized macrophage contributes to brain damage through CXCR3.2/CXCL11 pathways after RGNNV infection in grouper

, , , , , , , , , , , , , & ORCID Icon show all
Article: 2355971 | Received 12 Feb 2024, Accepted 26 Apr 2024, Published online: 23 May 2024

References

  • Fitch MT, Silver J. CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008;209(2):294–17. doi: 10.1016/j.expneurol.2007.05.014
  • Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012;122(4):1164–1171. doi: 10.1172/JCI58644
  • Allan JE, Dixon JE, Doherty PC, et al. Nature of the inflammatory process in the central nervous system of mice infected with lymphocytic choriomeningitis virus. Curr Top Microbiol Immunol. 1987;134:131–143.
  • Lackner AA, Dandekar S, Gardner MB, et al. Neurobiology of simian and feline immunodeficiency virus infections. Brain Pathol. 1991;1(3):201–212. doi: 10.1111/j.1750-3639.1991.tb00660.x
  • Kim WK, Alvarez X, Fisher J, et al. CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol. 2006;168(3):822–834. doi: 10.2353/ajpath.2006.050215
  • Thompson KA, Cherry CL, Bell JE, et al. Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol. 2011;179(4):1623–1629. doi: 10.1016/j.ajpath.2011.06.039
  • Van den Pol AN, Mao G, Yang Y, et al. Zika virus targeting in the developing brain. J Neurosci. 2017;37(8):2161–2175. doi: 10.1523/JNEUROSCI.3124-16.2017
  • Pulkkinen LIA, Butcher SJ, Anastasina M, et al. Tick-borne encephalitis virus: a structural view. Viruses. 2018;10(7):350. doi: 10.3390/v10070350
  • Denaeghel S, De Pelsmaeker S, Van Waesberghe C, et al. Pseudorabies virus infection causes downregulation of ligands for the activating NK cell receptor NKG2D. Viruses. 2021;13(2):266. doi: 10.3390/v13020266
  • Mojzesz M, Widziolek M, Adamek M, et al. Tilapia lake virus-induced neuroinflammation in zebrafish: microglia activation and sickness behavior. Front Immunol. 2021;12:760882. doi: 10.3389/fimmu.2021.760882
  • Mani A, Salinas I. The knowns and many unknowns of CNS immunity in teleost fish. Fish Shellfish Immunol. 2022;131:431–440. doi: 10.1016/j.fsi.2022.10.013
  • Bandín I, Souto S. Betanodavirus and VER disease: a 30-year research review. Pathogens. 2020;9(2):106.
  • Wang Q, Liu Y, Han C, et al. Efficient RNA virus targeting via CRISPR/CasRx in fish. J Virol. 2021;95(19):e0046121. doi: 10.1128/JVI.00461-21
  • Nishizawa T, Furuhashi M, Nagai T, et al. Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol. 1997;63(4):1633–1636. doi: 10.1128/aem.63.4.1633-1636.1997
  • Monel B, Compton AA, Bruel T, et al. Zika virus induces massive cytoplasmic vacuolization and paraptosis-like death in infected cells. Embo J. 2017;36(12):1653–1668. doi: 10.15252/embj.201695597
  • Chi SC, Lo CF, Kou GH, et al. Mass mortalities associated with viral nervous necrosis (VNN) disease in two species of hatchery-reared grouper, Epinephelus fuscogutatus and Epinephelus akaara (Temminck & Schlegel). J Fish Dis. 1997;20:185–193. doi: 10.1046/j.1365-2761.1997.00291.x
  • Shubin AV, Demidyuk IV, Komissarov AA, et al. Cytoplasmic vacuolization in cell death and survival. Oncotarget. 2016;7(34):55863–55889.
  • Kierdorf K, Masuda T, Jordão MJC, et al. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci. 2019;20(9):547–562. doi: 10.1038/s41583-019-0201-x
  • Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18(4):225–242. doi: 10.1038/nri.2017.125
  • Masuda T, Amann L, Sankowski R, et al. Novel Hexb-based tools for studying microglia in the CNS. Nat Immunol. 2020;21(7):802–815.
  • Goubau D, Deddouche S, Reis Sousa C. Cytosolic sensing of viruses. Immunity. 2013;38(5):855–869. doi: 10.1016/j.immuni.2013.05.007
  • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–795. doi: 10.1172/JCI59643
  • Bragg DC, Hudson LC, Liang YH, et al. Choroid plexus macrophages proliferate and release toxic factors in response to feline immunodeficiency virus. J Neurovirol. 2002;8(3):225–239. doi: 10.1080/13550280290049679
  • Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature. 2001;410(6831):988–994. doi: 10.1038/35073667
  • Filipowicz AR, McGary CM, Holder GE, et al. Proliferation of perivascular macrophages contributes to the development of encephalitic lesions in HIV-infected humans and in SIV-infected macaques. Sci Rep. 2016;6(1):32900. doi: 10.1038/srep32900
  • Rua R, McGavern DB. Alternatively activated brain-resident macrophages acquire and retain inflammatory properties following CNS infection while interacting with effector and memory T cells. J Immunol. 2016;196(1_Supplement):61.17. doi: 10.4049/jimmunol.196.Supp.61.17
  • Rua R, Lee JY, Silva AB, et al. Infection drives meningeal engraftment by inflammatory monocytes that impairs CNS immunity. Nat Immunol. 2019;20(4):407–419. doi: 10.1038/s41590-019-0344-y
  • Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12(2):121–127. doi: 10.1016/S1074-7613(00)80165-X
  • Peatman E, Liu Z. Evolution of CC chemokines in teleost fish: a case study in gene duplication and implications for immune diversity. Immunogenetics. 2007;59(8):613–623. doi: 10.1007/s00251-007-0228-4
  • Nomiyama H, Hieshima K, Osada N, et al. Extensive expansion and diversification of the chemokine gene family in zebrafish: identification of a novel chemokine subfamily CX. BMC Genomics. 2008;9(1):222. doi: 10.1186/1471-2164-9-222
  • Oghumu S, Varikuti S, Terrazas C, et al. CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model. Immunology. 2014;143(1):109–119. doi: 10.1111/imm.12293
  • Lu XJ, Chen Q, Rong YJ, et al. CXCR3.1 and CXCR3.2 differentially contribute to macrophage polarization in teleost fish. J Immunol. 2017;198(12):4692–4706. doi: 10.4049/jimmunol.1700101
  • Wang Q, Wang S, Zhang Y, et al. The CXC chemokines and CXC chemokine receptors in orange-spotted grouper (Epinephelus coioides) and their expression after Singapore grouper iridovirus infection. Dev Comp Immunol. 2019;90:10–20. doi: 10.1016/j.dci.2018.08.015
  • Zhou L, Wang S, Yu Q, et al. Characterization of novel aptamers specifically directed to red-spotted grouper nervous necrosis virus (RGNNV)-infected cells for mediating targeted siRNA delivery. Front Microbiol. 2020;11:660. doi: 10.3389/fmicb.2020.00660
  • Bennani N, Schmid-Alliana A, Lafaurie M, et al. Evaluation of phagocytic activity in a teleost fish, Dicentrarchus labrax. Fish Shellfish Immunol. 1995;5(3):237–246. doi: 10.1016/S1050-4648(05)80017-8
  • Neumann NF, Barreda DR, Belosevic M. Generation and functional analysis of distinct macrophage sub-populations from goldfish (Carassius auratus L.) kidney leukocyte cultures. Fish Shellfish Immunol. 2000;10(1):1–20. doi: 10.1006/fsim.1999.0221
  • Yamagoe S, Yamakawa Y, Matsuo Y, et al. Purification and primary amino acid sequence of a novel neutrophil chemotactic factor LECT2. Immunol Lett. 1996;52(1):9–13. doi: 10.1016/0165-2478(96)02572-2
  • Wang Q, Peng C, Yang M, et al. Single-cell RNA-seq landscape midbrain cell responses to red spotted grouper nervous necrosis virus infection. PLOS Pathog. 2021;17(6):e1009665. doi: 10.1371/journal.ppat.1009665
  • Zhang Y, Wang L, Zheng J, et al. Grouper interferon-induced transmembrane protein 1 inhibits iridovirus and nodavirus replication by regulating virus entry and host lipid metabolism. Front Immunol. 2021;12:636806. doi: 10.3389/fimmu.2021.636806
  • Arranz A, Doxaki C, Vergadi E, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci USA. 2012;109(24):9517–9522. doi: 10.1073/pnas.1119038109
  • Wang Q, Yang H, Yang M, et al. Toxic effects of bisphenol a on goldfish gonad development and the possible pathway of BPA disturbance in female and male fish reproduction. Chemosphere. 2019;221:235–245. doi: 10.1016/j.chemosphere.2019.01.033
  • Bechmann I, Priller J, Kovac A, et al. Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci. 2001;14(10):1651–1658. doi: 10.1046/j.0953-816x.2001.01793.x
  • Glass JD, Fedor H, Wesselingh SL, et al. Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol. 1995;38(5):755–762. doi: 10.1002/ana.410380510
  • Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci. 2002;25(1):537–562. doi: 10.1146/annurev.neuro.25.112701.142822
  • Benveniste EN. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med (Berl). 1997;75(3):165–173. doi: 10.1007/s001090050101
  • Corbera-Bellalta M, Planas-Rigol E, Lozano E, et al. Blocking interferon γ reduces expression of chemokines CXCL9, CXCL10 and CXCL11 and decreases macrophage infiltration in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis. 2016;75(6):1177–1186. doi: 10.1136/annrheumdis-2015-208371
  • Tomita K, Freeman BL, Bronk SF, et al. CXCL10-mediates macrophage, but not other innate immune cells-associated inflammation in murine nonalcoholic steatohepatitis. Sci Rep. 2016;6(1):28786. doi: 10.1038/srep28786
  • Baoprasertkul P, He C, Peatman E, et al. Constitutive expression of three novel catfish CXC chemokines: homeostatic chemokines in teleost fish. Mol Immunol. 2005;42(11):1355–1366. doi: 10.1016/j.molimm.2004.12.012
  • Chen J, Xu Q, Wang T, et al. Phylogenetic analysis of vertebrate CXC chemokines reveals novel lineage specific groups in teleost fish. Dev Comp Immunol. 2013;41(2):137–152. doi: 10.1016/j.dci.2013.05.006
  • Fu Q, Zeng Q, Li Y, et al. The chemokinome superfamily in channel catfish: I. CXC subfamily and their involvement in disease defense and hypoxia responses. Fish Shellfish Immunol. 2017;60:380–390. doi: 10.1016/j.fsi.2016.12.004